FILAMENT DRIVE FOR 3D PRINTER
    11.
    发明申请

    公开(公告)号:US20200282644A1

    公开(公告)日:2020-09-10

    申请号:US15931415

    申请日:2020-05-13

    Abstract: A low compressive force filament drive system for use with an additive manufacturing system includes a plurality of drives spaced from each other. Each drive includes a first rotatable shaft and a second rotatable shaft engaged with the first rotatable shaft in a counter rotational configuration. The filament drive system includes a pair of drive wheel, each fixedly attached to a shaft and comprising a groove about a circumference having a substantially smooth surface and positioned on opposing sides of a filament path with a gap therebetween so as to frictionally engage a filament provided in the filament path. The drive includes one or more bridge shafts, wherein each bridge shaft is configured to rotatably couple the adjacent drives of the plurality of drives, wherein the shafts are configured to be directly or indirectly driven by a motor. The counter rotating drive wheels pull the filament from a source and push the filament through a filament feed path to a feed drive in a print head without breaking or indenting a surface of the filament.

    3D printer with spool and material container

    公开(公告)号:US10442179B2

    公开(公告)日:2019-10-15

    申请号:US15237149

    申请日:2016-08-15

    Abstract: A 3D printer has a gantry configured to move in a plane substantially parallel to a build plane, and a platen configured to support a part being built. The platen is configured to move in a direction substantially normal to the build plane. A head carriage is carried by the gantry, and a print head is carried by and retained in the head carriage. A material container has a material container body and a material container cover configured to allow loading of a spool containing a supply of a consumable filament for printing with the 3D printer, the spool mounted on an axle containing a spool chip and electrical contacts. The material container body includes a first and second axle channels configured to accept first and second ends of the axle. The first axle channel has a number of electrical contacts and is tapered to orient the axle to align the axle contacts with the first axle channel contacts. A material well has first and second well edge landings at a first radius from the central longitudinal axis, the well edge landings extending toward each other from inner edges of the material well inwardly toward a center of the material well. An extension well extends laterally from the first and second well edge landings to a second radius larger than the first radius.

    Heated air system for 3D printer
    13.
    发明申请

    公开(公告)号:US20180043632A1

    公开(公告)日:2018-02-15

    申请号:US15237380

    申请日:2016-08-15

    CPC classification number: B33Y30/00 B29C64/118 B29C64/295 B33Y10/00

    Abstract: An apparatus and a method using the apparatus provides heated air in an additive manufacturing process for building a three-dimensional part. The method comprises providing a stream of flowable part material at an initial build level, the initial build level being positioned in and defining a horizontal plane wherein the stream of flowable material is being initially disposed on previously deposited part material. Heated air is provided at a selected temperature corresponding to the temperature of the stream of flowable part material such that the stream of flowable part material deposits on previously deposited part material in an adhering fashion thereby forming the three-dimensional part where in the heated air is provided in the horizontal plane of the initial build level.

    3D PRINTER WITH COUPLING FOR ATTACHING PRINT HEAD TO HEAD CARRIAGE

    公开(公告)号:US20180043627A1

    公开(公告)日:2018-02-15

    申请号:US15237128

    申请日:2016-08-15

    CPC classification number: B33Y30/00 B29C64/118 B29C64/209 B33Y40/00

    Abstract: An 3D printer has a gantry configured to move in a plane substantially parallel to a build plane. The system includes a platen configured to support a part being built in a layer by layer process, wherein the platen is configured to move in a direction substantially normal to the build plane. The system includes a head carriage carried by the gantry wherein the head carriage includes a first support member supporting a retaining mechanism. The retaining mechanism includes at least one member extending from the support member and a camming member rotatably attached to the support member and movable about an axis of rotation. The camming member has arcuate camming surface with an increasing radial distance from the axis of rotation. The system includes at least one print head having a housing with a first side surface configured to engage the at least one member and a second side surface configured to engage the arcuate camming surface. The camming member is positionable between a first, non-engaging position where the at least one print head is removable from the support member and a second, engaging position wherein the camming member engages the second side of the print head and the first side of the print head engages the at least one member and causes a frictional engagement therebetween.

    Low pull force filament delivery system

    公开(公告)号:US11485085B2

    公开(公告)日:2022-11-01

    申请号:US17112517

    申请日:2020-12-04

    Abstract: A low pull force system for feeding a filament along a feed path from a source to a liquefier in a 3D printer includes a low compressive force loading drive for advancing filament from the source, a feed drive for advancing filament into the liquefier, and an in-line accumulator comprising a telescoping joint positioned in the feed path between the loading drive and the feed drive. When the telescoping joint is in a contracted position, the loading drive activates to feed filament into the feed path at a rate faster than a rate at which the feed drive advances filament into the liquefier, causing the telescoping joint to expand and accrue a slack of filament in the feed path. When the telescoping joint reaches an extended position, the loading drive deactivates while the feed drive continues to advance filament into the liquefier, and the slack of filament is consumed.

    LOW PULL FORCE FILAMENT DELIVERY SYSTEM

    公开(公告)号:US20210221061A1

    公开(公告)日:2021-07-22

    申请号:US17112517

    申请日:2020-12-04

    Applicant: Stratasys, Inc

    Abstract: A low pull force system for feeding a filament along a feed path from a source to a liquefier in a 3D printer includes a low compressive force loading drive for advancing filament from the source, a feed drive for advancing filament into the liquefier, and an in-line accumulator comprising a telescoping joint positioned in the feed path between the loading drive and the feed drive. When the telescoping joint is in a contracted position, the loading drive activates to feed filament into the feed path at a rate faster than a rate at which the feed drive advances filament into the liquefier, causing the telescoping joint to expand and accrue a slack of filament in the feed path. When the telescoping joint reaches an extended position, the loading drive deactivates while the feed drive continues to advance filament into the liquefier, and the slack of filament is consumed.

    EXTRUSION TIP INSERT FOR USE IN ADDITIVE MANUFACTURING SYSTEM

    公开(公告)号:US20200079014A1

    公开(公告)日:2020-03-12

    申请号:US16126887

    申请日:2018-09-10

    Abstract: A liquefier assembly for use in an extrusion-based additive manufacturing system includes a liquefier tube compositionally comprising a metallic material, and having a first end and a second end offset along a longitudinal axis, and a flow channel extending from the first end to the second end. The assembly further includes an extrusion tip compositionally comprising a metallic material and coupled to the second end of the liquefier tube, the extrusion tip having a cavity having an interior shoulder wherein the cavity terminates in an opening. The liquefier includes a hardened insert compositionally comprising a material that is harder than the metallic material of the extrusion tip and the metallic material of the liquefier tube. The hardened insert has an exterior shoulder that engages the interior shoulder of the extrusion tip such that the insert is press fit within the extrusion tip. The tip insert has a channel that aligns with the flow channel wherein the channel terminates at an extrusion port configured to extrude material therefrom.

    3D printer with coupling for attaching print head to head carriage

    公开(公告)号:US10513104B2

    公开(公告)日:2019-12-24

    申请号:US15237128

    申请日:2016-08-15

    Abstract: An 3D printer has a gantry configured to move in a plane substantially parallel to a build plane. The system includes a platen configured to support a part being built in a layer by layer process, wherein the platen is configured to move in a direction substantially normal to the build plane. The system includes a head carriage carried by the gantry wherein the head carriage includes a first support member supporting a retaining mechanism. The retaining mechanism includes at least one member extending from the support member and a camming member rotatably attached to the support member and movable about an axis of rotation. The camming member has arcuate camming surface with an increasing radial distance from the axis of rotation. The system includes at least one print head having a housing with a first side surface configured to engage the at least one member and a second side surface configured to engage the arcuate camming surface. The camming member is positionable between a first, non-engaging position where the at least one print head is removable from the support member and a second, engaging position wherein the camming member engages the second side of the print head and the first side of the print head engages the at least one member and causes a frictional engagement therebetween.

Patent Agency Ranking