摘要:
The invention provides an electronic device configured to prevent or reduce electrostatic discharge from causing a pixel to malfunction. An electronic device manufactured according to the principles of the invention may include multiple conductive layers that cross but do not contact each other, wherein at least one of the conductive layers includes a width change part having a width that changes in a length direction of the at least one of the conductive layers, and a tab connected to at least one of the conductive layers at a region thereof that does not cross a neighboring conductive layer. Alternatively, the width change part may have a width that continuously varies along a length of the at least one conductive layer and may also have obtuse corner edges. The invention also provides a flat organic electroluminescent display (OELD) or LCD display device that includes such an electronic device.
摘要:
A touch panel includes first and second normally spaced apart substrates. The first substrate includes first spaced apart touch electrodes extended in a first direction and each having a first width (W1). The second substrate includes second spaced apart touch electrodes extended in a different second direction and each having a second width (W2) which is substantially narrower than the first width. One of the substrates can be flexed so that momentary shorting contact is established between corresponding first and second touch electrodes at positions where pressing touch is provided. A combination of interconnect wirings and interrogation circuits are provided for automatically determining where and when the temporary shorting contacts were made, even if plural ones are simultaneously made. The disclosed embodiments include ones where the number of interconnect wirings are reduced.
摘要:
An OLED display device and a method of fabricating the same. The OLED display device has at least one of a common power bus line or a cathode bus line formed at a peripheral portion of the OLED display device. By forming a lower line when a gate electrode of a thin film transistor is formed, and forming an upper line connected to the lower line through a contact hole when source and drain electrodes of the thin film transistor are formed, a dual structure of lower and upper lines is formed. As such, the OLED display device can reduce the width of interconnections without a high voltage drop to thereby increase an emission area of a light emitting portion of the OLED display device.
摘要:
The invention provides an electronic device configured to prevent or reduce electrostatic discharge from causing a pixel to malfunction. An electronic device manufactured according to the principles of the invention may include multiple conductive layers that cross but do not contact each other, wherein at least one of the conductive layers includes a width change part having a width that changes in a length direction of the at least one of the conductive layers, and a tab connected to at least one of the conductive layers at a region thereof that does not cross a neighboring conductive layer. Alternatively, the width change part may have a width that continuously varies along a length of the at least one conductive layer and may also have obtuse corner edges. The invention also provides a flat organic electroluminescent display (OELD) or LCD display device that includes such an electronic device.
摘要:
An OLED display device and a method of fabricating the same. The OLED display device has at least one of a common power bus line or a cathode bus line formed at a peripheral portion of the OLED display device. By forming a lower line when a gate electrode of a thin film transistor is formed, and forming an upper line connected to the lower line through a contact hole when source and drain electrodes of the thin film transistor are formed, a dual structure of lower and upper lines is formed. As such, the OLED display device can reduce the width of interconnections without a high voltage drop to thereby increase an emission area of a light emitting portion of the OLED display device.
摘要:
The invention provides an electronic device configured to prevent or reduce electrostatic discharge from causing a pixel to malfunction. An electronic device manufactured according to the principles of the invention may include multiple conductive layers that cross but do not contact each other, wherein at least one of the conductive layers includes a width change part having a width that changes in a length direction of the at least one of the conductive layers, and a tab connected to at least one of the conductive layers at a region thereof that does not cross a neighboring conductive layer. Alternatively, the width change part may have a width that continuously varies along a length of the at least one conductive layer and may also have obtuse corner edges. The invention also provides a flat organic electroluminescent display (OELD) or LCD display device that includes such an electronic device.
摘要:
The invention provides an electronic device configured to prevent or reduce electrostatic discharge from causing a pixel to malfunction. An electronic device manufactured according to the principles of the invention may include multiple conductive layers that cross but do not contact each other, wherein at least one of the conductive layers includes a width change part having a width that changes in a length direction of the at least one of the conductive layers, and a tab connected to at least one of the conductive layers at a region thereof that does not cross a neighboring conductive layer. Alternatively, the width change part may have a width that continuously varies along a length of the at least one conductive layer and may also have obtuse corner edges. The invention also provides a flat organic electroluminescent display (OELD) or LCD display device that includes such an electronic device.
摘要:
According to an example embodiment of the present invention, a photoresist pattern is formed on a base substrate including a neutral layer. A sacrifice structure including a first sacrifice block and a second sacrifice block is formed on the base substrate having the photoresist pattern, and the sacrifice structure is formed from a first thin film including a first block copolymer. Thus, a chemical pattern is formed to form a nano-structure. Therefore, the nano-structure may be easily formed on a substrate having a large size by using a block copolymer, and productivity and manufacturing reliability may be improved.