Abstract:
Machine Learning (ML) models are deployed in digital platforms for data analytics. However, it is realized that there is growing trends of recognition that machine learning models expose new vulnerabilities in software systems, for instance training data poisoning, adversarial responses, model extraction, and the like. Embodiments of the present disclosure provide systems and methods for safeguarding training dataset by exploiting immutability feature and generating immutable machine learning models for data analytics. More specifically, immutable records of events are governed by smart contracts within highly secure permissioned distributed ledger. This dataset is used for training multiple machine learning models which are immutable in nature and further utilized for triggering actions for incoming request(s) from IoT platforms.
Abstract:
A method and system for incorporating regression into a Stacked Auto Encoder utilizing deep learning based regression technique that enables joint learning of parameters for a regression model to train the SAE for a regression problem. The method comprises generating a regression model for the SAE for solving the regression problem, wherein regression model is formulated as a non-convex joint optimization function for an asymmetric SAE. The method further comprises reformulating the non-convex joint optimization function as an Augmented Lagrangian formulation in terms of a plurality of proxy variables and a plurality of hyper parameters. The method comprises splitting the Augmented Lagrangian formulation into sub-problems using Alternating Direction Method of Multipliers and jointly learning parameters for the regression model to train the SAE for the regression problem. The learned weights enable estimating the unknown target values.
Abstract:
Disclosed is a method and apparatus for computation and processing of an image for image matching. The apparatus here is configured to pre-process plurality of images for creating an image template. Next, the test image is extracted and pre-processed for assessing the degree of match between the test image components and the image components of the images in the image template, based a position based matching score, a feature based matching score or both.
Abstract:
The present disclosure relates to designing of a hierarchy of feature vectors. In one embodiment, a method for facilitating design of a hierarchy of feature vectors while recognizing one or more characters in a video is disclosed. The method comprises collecting one or more features from each of the segments in a video frame extracted from a video; preparing multi-dimensional feature vectors to classify the one or more characters; calculating a minimum distance between the multi-dimensional features vectors of a test character and the multi-dimensional feature vectors of a pre-stored character template; selecting, with respect to a decreasing order of the minimum distance, the multi-dimensional feature vectors to design a hierarchy of the multi-dimensional feature vectors; and classifying the characters based on the hierarchy of the multi-dimensional feature vectors.