Abstract:
An integrated force sensing element includes a piezoelectric sensor formed in an integrated circuit (IC) chip and a strain gauge at least partially overlying the piezoelectric sensor, where the piezoelectric sensor is able to flex. A human-machine interface using the integrated force sensing element may include a conditioning circuit, temperature gauge, FRAM and a processor core.
Abstract:
A method includes pulsating a magnetic field at a first location associated with an external surface of a wall containing magnetic material. The method also includes measuring at least one characteristic of the pulsating magnetic field at a second location associated with the external surface of the wall. The at least one characteristic changes based on corrosion on an internal surface the wall between the first and second locations. The magnetic field could be pulsated by applying an AC signal to a conductive coil or by vibrating a magnet. The method could also include analyzing the at least one measured characteristic to identify an amount of the corrosion and/or a change in the amount of the corrosion. Use of the internal surface the wall could be modified based on the amount or change of the corrosion. Multiple magnetic fields can be generated at multiple first locations, and the at least one characteristic can be measured at multiple second locations.
Abstract:
The present disclosure provides a power switch for use in a power management system including a power source for supplying an electrical current, and a load for receiving the electric current upon establishing a circuit with the power source. The power switch includes a motion sensor, a timer, and a gate. The motion sensor is configured to sense a motion related to an operation of the load and generate an idle signal when the sensed motion is below a predetermined threshold. The timer is coupled with the motion sensor, and it is configured to activate a power-off signal upon detecting the idle signal for a predetermined time period. The gate is coupled with the timer, and it is configured to either complete the circuit when the power-off signal is inactive or break up the circuit when the power-off signal is active.
Abstract:
A method includes pulsating a magnetic field at a first location associated with an external surface of a wall containing magnetic material. The method also includes measuring at least one characteristic of the pulsating magnetic field at a second location associated with the external surface of the wall. The at least one characteristic changes based on corrosion on an internal surface the wall between the first and second locations. The magnetic field could be pulsated by applying an AC signal to a conductive coil or by vibrating a magnet. The method could also include analyzing the at least one measured characteristic to identify an amount of the corrosion and/or a change in the amount of the corrosion. Use of the internal surface the wall could be modified based on the amount or change of the corrosion. Multiple magnetic fields can be generated at multiple first locations, and the at least one characteristic can be measured at multiple second locations.
Abstract:
A system includes a battery and a monitoring circuit coupled to the battery. The monitoring circuit includes a sense circuit and a peripheral device coupled to the sense circuit. The peripheral device includes a universal asynchronous receiver-transmitter (UART) receiver having an adaptive sample timing circuit with a numerically-controlled oscillator (NCO) circuit. The peripheral device also includes memory coupled to the UART receiver and configured to store battery monitoring data.
Abstract:
Methods, systems, and apparatus to facilitate control for a low-power battery state are disclosed. An example apparatus includes a charge pump coupled to a power terminal and a charge pump switch, the charge pump switch coupled to a discharging terminal; a power supply switch circuit coupled to the power terminal and the discharging terminal, the power supply switch circuit being connected to bypass the charge pump and the charge pump switch; and a switch controller coupled to the charge pump switch and the power supply switch circuit.
Abstract:
A system for measuring current includes a conductive trace comprising N substantially parallel straight sections having a substantially constant cross-section, N≥4. Adjacent substantially straight sections are spaced apart by a given distance and each pair of adjacent straight sections is connected by a respective loop of the current trace such that current in odd-numbered straight sections flows in a first direction and current in even-numbered straight sections flows in an opposite direction. The N magnetic field based current sensors are each positioned on a respective straight section of the conductive trace. The current is calculated based on ( S ( 1 ) - ( N - 1 1 ) S ( 2 ) + ( N - 1 2 ) S ( 3 ) - … - ( N - 1 N - 3 ) S ( N - 2 ) + ( N - 1 N - 2 ) S ( N - 1 ) - S ( N ) ) 2 ( N - 1 ) ; ( M k ) = M ! ( M - k ) ! k ! ; where M=N−1, and S(i) is the measured signal read at magnetic field based current sensor i.
Abstract:
A method includes pulsating a magnetic field at a first location associated with an external surface of a wall containing magnetic material. The method also includes measuring at least one characteristic of the pulsating magnetic field at a second location associated with the external surface of the wall. The at least one characteristic changes based on corrosion on an internal surface the wall between the first and second locations. The magnetic field could be pulsated by applying an AC signal to a conductive coil or by vibrating a magnet. The method could also include analyzing the at least one measured characteristic to identify an amount of the corrosion and/or a change in the amount of the corrosion. Use of the internal surface the wall could be modified based on the amount or change of the corrosion. Multiple magnetic fields can be generated at multiple first locations, and the at least one characteristic can be measured at multiple second locations.
Abstract:
A closed-loop calibration scheme is configured to allow a device to remain in continuous operation. A signal generator device provides a pseudorandom sequence for a signal received by a magnetic field magnetic field sensor, such as a Hall-effect sensor. A signal decoder circuit receives the output signal and decouples the generated spread spectrum signal from the interference by measuring the gain in the overall signal. The decoder device distinguishes the known spread spectrum signal from any perturbation effects of particular bandwidths. A processing circuit then outputs a signal that has an operation parameter that has been adjusted to compensate for the perturbation effects. The processing circuit provides the receiver circuit with the compensation signal, hence forming a closed-loop calibration configuration.
Abstract:
Operating a current sensor by conducting a current serially through a first region and a second region of an electrically conductive member. A first magnetic field produced by the current in the first region is sensed using a first magnetic field based current (MFBC) sensor having a first sensitivity. The sensitivity of a second MFBC is reduced. A second magnetic field produced by the current in the second region is sensed using the second MFBC sensor having a reduced sensitivity, in which the reduced sensitivity is lower than the first sensitivity. A magnitude of the current is calculated based on the first magnetic field and the second magnetic field. A dynamic range of the current sensor is extended by calculating a magnitude of the current using the second magnetic field after the first MFBC is saturated.