Abstract:
This method for determining a flight distance over a discontinuity segment comprises the steps of determining an altitude of entry to said trajectory portion and an altitude of exit from said trajectory portion, discretization of an altitude interval delimited by the altitude of entry and the altitude of exit into a plurality of elementary intervals, each elementary interval being defined using an elementary step and, for each elementary interval, determining an elementary slope of the aircraft. This method further comprises a step of determining the flight distance over the discontinuity segment as a function of a direct distance between the framing segments, the elementary slopes, the elementary steps and the total extent of said trajectory portion.
Abstract:
A method is described that is implemented by computer for optimizing the vertical descent profile of an aircraft, the vertical profile being broken down into an altitude profile and a speed profile. One or more altitudes of passage can be determined by minimizing the overall deviation between the speed profile and one or more speed constraints previously received. The optimized descent profile can comprise one or more of these altitudes of passage. Different developments are described, in particular embodiments in which an optimized altitude of passage minimizes the engine thrust, the descent profile is of OPEN IDLE, FPA or VS type, the optimized descent profile is determined backward, a speed constraint is of AT or AT OR ABOVE type, and the use of the airbrakes. Display modalities are described, as are system and software aspects.
Abstract:
A method for adapting an aircraft constant-gradient descent segment comprises: an acquisition step in which state variables characterizing the aircraft, environment variables characterizing the environment thereof and path variables characterizing the predicted path thereof at one of the initial and final points of the segment are acquired; a calculation step whereby a limit ground gradient for at least one performance criterion is calculated from the state variables, environment variables and path variables; a validity verification step checking the validity of the path initially predicted against the most restrictive limit ground gradient; and when the path initially predicted is not valid: a feasibility verification step checking the feasibility of a command to modify at least one state variable; if feasibility is verified, a prediction of executing the command; otherwise, a prediction of modifying one of the initial and final points of the segment with respect to constraints of the flight plan.
Abstract:
A method for aiding navigation for an aircraft between a descent start point and a computation end point, comprises the computation steps of: collecting a flight plan consisting of a succession of waypoints and of the associated vertical constraints; determining a corridor consisting of a floor trajectory and of a ceiling trajectory defining the minimum and maximum altitudes permitted to the aircraft; splitting the corridor into several cells defined between two waypoints furthest apart and between which the ceiling trajectory is distinct from the floor trajectory; determining for at least one cell a vertical trajectory complying with the altitude constraints and comprising the longest possible IDLE segment; and a step consisting in determining and displaying maneuvering points of the aircraft making it possible to follow the target vertical trajectory.