Abstract:
Optimizing parameters includes, during a time interval, rotating from setting a first parameter to a first value for a first time period, to setting the first parameter to a second value for a second time period such that the time interval includes multiple first time periods in which the first parameter is set to the first value sequenced with multiple second time periods in which the first parameter is set to the second value; obtaining, for the time interval, a first set of ratings corresponding to the first time periods and a second set of ratings corresponding to the second time periods; averaging, for the time interval, the first set of ratings to a first average rating and the second set of ratings to a second average rating; and correlating the first average rating to the first value and the second average rating to the second value.
Abstract:
A method to watermark an audio signal includes inserting a first symbol in a spectral well, the spectral well corresponding to at least one of a second spectral portion when amplitude of a first spectral portion and amplitude of a third spectral portion exceed amplitude of the second spectral portion, or the second temporal portion when amplitude of a first temporal portion and amplitude of a third temporal portion exceed amplitude of the second temporal portion.
Abstract:
A method for a machine or group of machines to carry watermark data in an encoded audio data frame of an audio signal includes receiving the encoded audio data frame having encoded therein a portion of the audio signal. The encoded audio data frame includes a plurality of data blocks, wherein the plurality of data blocks includes, a synchronization information block, at least one encoded data block, and an error check block. The method further includes receiving modified watermark data as modified based on a masking threshold analysis of the audio signal and transforming the encoded audio data frame into a modified encoded audio data frame.
Abstract:
Distributed audio mixing may include transmitting a set of parameters from a local location to one or more remote locations at least multiple miles away from the local location for, at each of the one or more remote locations, one or more remote audio sources to be processed according to the parameters to produce respective one or more remote audio mixes; processing one or more local audio sources according to the parameters to produce a local audio mix; receiving the one or more remote audio mixes; and locally summing the one or more remote audio mixes to the local audio mix to obtain a final audio mix.
Abstract:
A method to watermark an audio signal may include receiving watermark data payload information, converting the watermark data payload information into a watermark audio signal including one or more watermark messages corresponding to the watermark data payload information, and inserting the one or more watermark messages into multiple spectral channels of the audio signal, wherein each of the multiple spectral channels occupies a different frequency range, wherein bandwidth of a first spectral channel located in a first frequency region is smaller than bandwidth of a second spectral channel located in a second frequency region, and wherein bandwidth of a spectral channel, from the multiple spectral channels, is equal to a number divided by the time duration of a respective symbol, from the multiple symbols, in the spectral channel, wherein the number is in the range of 0.7 to 2.5.
Abstract:
A method for a machine or group of machines to watermark an audio signal includes receiving an audio signal and a watermark signal including multiple symbols, and inserting at least some of the multiple symbols in multiple spectral channels of the audio signal, each spectral channel corresponding to a different frequency range. Optimization of the design incorporates minimizing the human auditory system perceiving the watermark channels by taking into account perceptual time-frequency masking, pattern detection of watermarking messages, the statistics of worst case program content such as speech, and speech-like programs.
Abstract:
Determining effect of changes in parameters may include, during a time interval, rotating from setting a first parameter to a first value for a first time period, to setting the first parameter to a second value for a second time period such that the time interval includes multiple first time periods with the first parameter set to the first value sequenced with multiple second time periods with the first parameter set to the second value; obtaining, for the time interval, a first set of ratings corresponding to the first time periods and a second set of ratings corresponding to the second time periods; averaging, for the time interval, the first set of ratings to a first average rating and the second set of ratings to a second average rating; and correlating the first average rating to the first value and the second average rating to the second value.
Abstract:
A method for a machine or group of machines to watermark an audio signal includes receiving an audio signal and a watermark signal including multiple symbols, and inserting at least some of the multiple symbols in multiple spectral channels of the audio signal, each spectral channel corresponding to a different frequency range. Optimization of the design incorporates minimizing the human auditory system perceiving the watermark channels by taking into account perceptual time-frequency masking, pattern detection of watermarking messages, the statistics of worst case program content such as speech, and speech-like programs.
Abstract:
Optimizing parameters includes, during a time interval, rotating from setting a first parameter to a first value for a first time period, to setting the first parameter to a second value for a second time period such that the time interval includes multiple first time periods in which the first parameter is set to the first value sequenced with multiple second time periods in which the first parameter is set to the second value; obtaining, for the time interval, a first set of ratings corresponding to the first time periods and a second set of ratings corresponding to the second time periods; averaging, for the time interval, the first set of ratings to a first average rating and the second set of ratings to a second average rating; and correlating the first average rating to the first value and the second average rating to the second value.
Abstract:
Optimizing parameters includes, during a time interval, rotating from setting a first parameter to a first value for a first time period, to setting the first parameter to a second value for a second time period such that the time interval includes multiple first time periods in which the first parameter is set to the first value sequenced with multiple second time periods in which the first parameter is set to the second value; obtaining, for the time interval, a first set of ratings corresponding to the first time periods and a second set of ratings corresponding to the second time periods; averaging, for the time interval, the first set of ratings to a first average rating and the second set of ratings to a second average rating; and correlating the first average rating to the first value and the second average rating to the second value.