Abstract:
Disclosed is a method and system for identifying a sensor to be deployed in a physical environment. The method may comprise storing sensor data and metadata of the plurality of sensors in a data store. Further, the method may comprise deriving sensor information comprising at least one of thematic information, temporal information, and spatial information. The method may further comprise creating sensor ontology to define a relationship between the sensor data, the metadata, and the sensor information. The sensor ontology may be stored in a knowledge repository of the data store. The method may further comprise receiving and decomposing the search query into at least one of a basic query component and an inferred query component. Finally, the method may comprise executing the basic query component or the inferred query component on the data store and the knowledge repository respectively in order to identify the sensor.
Abstract:
An acoustic array system for anomaly detection is provided. The acoustic array system (100) performs a scan (or a progressive scan of frequencies) of a given volume by transmitting one or more signals, and receives one or more reflected signals from objects within the volume. The reflected signals are then amplified and converted to a set of digital signals. Features of the set of digital signals are extracted both in time and frequency domains. The acoustic array system (100) further performs a comparison of these set of digital extracted features with the reflected signals via machine learning techniques. Based on the comparison, the acoustic array system detects one or more anomalies.
Abstract:
A method and system is provided for monitoring the health status of electronic appliances. Particularly, the disclosure provides a method and system for registering an electronic appliance with a diagnostic server, sampling a transient and steady current signature of the electronic appliance by a home energy gateway, uploading said sampled transient and steady current signature to the diagnostic server for further analysis, diagnosing a health status of said electronic appliance based on the analyzed transient and steady current signature, and reporting a diagnosed health status of said electronic appliances to a user.
Abstract:
This disclosure relates generally to real-time path planning. Planning amidst obstacles in a cluttered indoor environment is a difficult task for a robotic agent. The disclosed method provides semidefinite programming induced free-space based path planning. Free-space is generated by an efficient environment grid resolution independent seeding technique. In the proposed resolution independent seeding technique, initial position of the robotic agent is considered as the first seed. For subsequent seeding, information of the expanded earlier seeds are employed intelligently. This process is followed unto a finite sequence, which naturally results in a contiguous navigable convex free-space. This contiguous navigable convex free-space is employed to create an undirected graph, which is then used for path planning. Path planning is done locally by evaluating the subgoal with respect to a final goal. Local planning cumulatively assists the planner to attain the final goal.
Abstract:
Motion parameters estimation for localization of differential drive vehicles is an important part of robotics and autonomous navigation. Conventional methods require introceptive as well extroceptive sensors for localization. The present disclosure provides a control command based adaptive system and method for estimating motion parameters of differential drive vehicles. The method utilizes information from one or more time synchronized command signals and generate an experimental model for estimating one or more motion parameters of the differential drive vehicle by computing a mapping function. The experimental model is validated to determine change in the one or more motion parameters with change in one or more factors and adaptively updated to estimate updated value of the one or more motion parameters based on the validation. The system and method of present disclosure provide accurate results for localization with minimum use of extroceptive sensors. Further, reduced number of sensors leads to reduction in cost.