Abstract:
An electro-optic system, the electro-optic system that may include an input port that is configured to receive a bandpass signal that conveys information; wherein the bandpass signal is a radio frequency (RF) signal; an optical carrier source that is configured to generate an optical carrier signal having an optical carrier frequency; at least one electrical bias circuit that is configured to generate at least one electrical bias signal; an electro-optic modulation circuit that is linear at the optical field; a manipulator that is configured to (a) receive the at least one electrical bias signal and the bandpass signal, (b) generate, based on the at least one electrical bias signal and the bandpass signal, at least one modulating signal; wherein the electro-optic modulation circuit is configured to modulate the optical carrier by the at least one modulating signal to provide an output optical signal that comprises at least one optical pilot tone and at least one optical sideband that conveys the information.
Abstract:
A method for exchanging information with an Optical Network Unit (ONU), the method comprising: receiving, by the ONU, downstream signals that comprise a pilot signal and downstream information signals; wherein the downstream information signals embed first polarization modulated information and second polarization modulated information; wherein the pilot signal is received at a pilot frequency slot and the downstream information signals are received at a downstream information frequency slot that differs from the pilot frequency slot; splitting the downstream signals to first, second, third and fourth sets of signals; wherein the splitting comprises performing a polarization based splitting to provide first and second intermediate sets of signals; wherein the first and second sets of signals originate from the first intermediate set of signals and the third and fourth sets of signals originate from the second intermediate set of signals; generating a fifth set of signals by providing the second and fourth sets of signals to a polarization changing circuit, wherein a polarization direction of the fifth set of signals differs from a polarization direction of the first and second intermediate sets of signals; generating first, second and third sets of detection signals, in response to the first, third and fifth sets of signals; and reconstructing the first polarization modulated information and the second polarization modulated information in response to the first, second and third sets of detection signals.
Abstract:
A method for calculating a reconstructed phase that includes: Calculating a current phase signal and current amplitude signal that represent a phase and amplitude of a current input symbol, respectively. Generating, in response to the current phase signal and an estimate of a phase of a last input symbol that preceded the current input symbol, multiple partial references, some of which are responsive to (i) phase signals representative of phases of a plurality of input symbols that preceded the current input symbol, and (ii) estimates of the phase of the plurality of input symbols. Calculating unwrapped partial references. Estimating a constant carrier frequency offset (CFO) phase rotation in response to the unwrapped partial references. Calculating a reconstructed phase of the current input symbol in response to, at least, the estimate of the constant CFO phase rotation and to the unwrapped partial references.
Abstract:
A method for calculating a reconstructed phase that includes: Calculating a current phase signal and current amplitude signal that represent a phase and amplitude of a current input symbol, respectively. Generating, in response to the current phase signal and an estimate of a phase of a last input symbol that preceded the current input symbol, multiple partial references, some of which are responsive to (i) phase signals representative of phases of a plurality of input symbols that preceded the current input symbol, and (ii) estimates of the phase of the plurality of input symbols. Calculating unwrapped partial references. Estimating a constant carrier frequency offset (CFO) phase rotation in response to the unwrapped partial references. Calculating a reconstructed phase of the current input symbol in response to, at least, the estimate of the constant CFO phase rotation and to the unwrapped partial references.