-
公开(公告)号:US12018356B2
公开(公告)日:2024-06-25
申请号:US16895425
申请日:2020-06-08
Applicant: Terves Inc.
Inventor: Brian P. Doud , Nicholas J. Farkas , Andrew J. Sherman
Abstract: A castable, moldable, and/or extrudable structure using a metallic primary alloy. One or more additives are added to the metallic primary alloy so that in situ galvanically-active reinforcement particles are formed in the melt or on cooling from the melt. The composite contains an optimal composition and morphology to achieve a specific galvanic corrosion rate in the entire composite. The in situ formed galvanically-active particles can be used to enhance mechanical properties of the composite, such as ductility and/or tensile strength. The final casting can also be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final composite over the as-cast material.
-
公开(公告)号:US10760151B2
公开(公告)日:2020-09-01
申请号:US15888751
申请日:2018-02-05
Applicant: Terves Inc.
Inventor: Brian P. Doud , Nicholas J. Farkas , Andrew J. Sherman
Abstract: A castable, moldable, and/or extrudable structure using a metallic primary alloy. One or more additives are added to the metallic primary alloy so that in situ galvanically-active reinforcement particles are formed in the melt or on cooling from the melt. The composite contain an optimal composition and morphology to achieve a specific galvanic corrosion rate in the entire composite. The in situ formed galvanically-active particles can be used to enhance mechanical properties of the composite, such as ductility and/or tensile strength. The final casting can also be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final composite over the as-cast material.
-
公开(公告)号:US20180155813A1
公开(公告)日:2018-06-07
申请号:US15888751
申请日:2018-02-05
Applicant: Terves Inc.
Inventor: Brian P. Doud , Nicholas J. Farkas , Andrew J. Sherman
Abstract: A castable, moldable, and/or extrudable structure using a metallic primary alloy. One or more additives are added to the metallic primary alloy so that in situ galvanically-active reinforcement particles are formed in the melt or on cooling from the melt. The composite contain an optimal composition and morphology to achieve a specific galvanic corrosion rate in the entire composite. The in situ formed galvanically-active particles can be used to enhance mechanical properties of the composite, such as ductility and/or tensile strength. The final casting can also be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final composite over the as-cast material.
-
-