Abstract:
A galley cart system employs a dry ice compartment and a refrigeration compartment in a galley cart in flow communication with the dry ice compartment. A ventilation system is in interruptible flow communication with at least the refrigeration compartment and configured to receive gas discharged from at least the refrigeration compartment.
Abstract:
An ultraviolet (UV) light sanitizing system is configured to sanitize a structure. The UV light sanitizing system includes a UV light assembly that is configured to emit UV light onto the structure, and a UV light emission control unit coupled to the UV light assembly. The UV light emission control unit is configured to control the UV light assembly to emit UV light onto the structure within at least a first UV band and a second UV band that differs from the first UV narrow band during a sanitizing cycle that sanitizes the structure. The UV light within the first and second UV bands is configured to kill at least one type of microbe.
Abstract:
An aircraft has a ventilation system that employs a plurality of nozzles positioned in a cavity between a sidewall of the aircraft cabin and a section of the aircraft fuselage. The nozzles receive a supply of ventilation air and direct jets of air from the nozzles, through the cavity and into the aircraft cabin. The jets of air produced by the nozzles create low-pressure areas in the cavity. At least one return air opening in the cabin sidewall communicates the low-pressure areas with the cabin interior, whereby the low pressure areas draw air from the cabin interior into the cavity where the drawn air is entrained with the jets of air produced by the nozzles. Devices inside the cavity remove suspended impurities from the air drawn into the cavity. In this manner, the ventilation system filters or sanitizes the air drawn through the system.
Abstract:
An aircraft has a ventilation system that employs a plurality of nozzles positioned in a cavity between a sidewall of the aircraft cabin and a section of the aircraft fuselage. The nozzles receive a supply of ventilation air and direct jets of air from the nozzles, through the cavity and into the aircraft cabin. The jets of air produced by the nozzles create low-pressure areas in the cavity. At least one return air opening in the cabin sidewall communicates the low-pressure areas with the cabin interior, whereby the low pressure areas draw air from the cabin interior into the cavity where the drawn air is entrained with the jets of air produced by the nozzles. Devices inside the cavity remove suspended impurities from the air drawn into the cavity. In this manner, the ventilation system filters or sanitizes the air drawn through the system.
Abstract:
A galley cart system employs a dry ice compartment and a refrigeration compartment in a galley cart in flow communication with the dry ice compartment. A ventilation system is in interruptible flow communication with at least the refrigeration compartment and configured to receive gas discharged from at least the refrigeration compartment.
Abstract:
Provided is an air diffuser and a construction method thereof. The air diffuser is especially applied to the field of civil aircrafts. The air diffuser comprises: an open upper end part; an open lower end part; and an air flow passage defined between the open upper end part and the open lower end part, the air flow passage comprising a first side wall and a second side wall which are connected between the open upper end part and the open lower end part and are symmetrically located with respect to a vertical center plane of the air diffuser; wherein the section outline of each of the first side wall and the second side wall has a curved shape bending inwards, such that in a direction from the open upper end part to the open lower end part, the air flow passage has, in sequence, a contraction portion bending toward the vertical center plane and an expansion portion away from the vertical center plane.
Abstract:
A system and method of sanitizing one or more structures within an enclosed space includes operatively coupling an ozone ventilation control unit to an ultraviolet (UV) light assembly, an ozone sensor, and an exhaust fan, using the ozone ventilation control unit to operate the UV light assembly to emit UV light into or onto structure(s) of the enclosed space during a cleaning cycle, receiving, by the ozone ventilation control unit, an ozone presence signal indicative of an amount of ozone within the enclosed space from an ozone sensor that detects the amount of ozone within the enclosed space, using the ozone ventilation control unit to selectively activate and deactivate the exhaust fan based on the amount of ozone within the enclosed space, and using the ozone ventilation control unit to selectively activate and deactivate the UV light assembly based on the amount of ozone within the enclosed space.
Abstract:
A galley cart system employs a dry ice compartment and a refrigeration compartment in a galley cart in flow communication with the dry ice compartment. A ventilation system is in interruptible flow communication with at least the refrigeration compartment and is for receiving gas discharged from at least the refrigeration compartment.
Abstract:
A galley cart system employs a housing with a door coupled to the housing, the door configured to be moved between a closed position and an open position. A vent plate in the housing communicates between a first compartment and a second compartment. A valve plate adjacent the vent plate is movable from a venting position when the door is in the closed position to a blocking position when the door is in the open position thereby preventing flow communication between the first and second compartment.
Abstract:
A seal assembly for a gas turbine engine employs a first seal forming an oil chamber around a bearing. The first seal is configured to maintain the oil chamber at a first pressure. A second seal forms a ventilating cavity around the oil chamber. The second seal is configured to maintain the ventilating cavity at a second pressure, the second pressure being less than the first pressure and less than an ambient pressure of a primary flow path in the engine. A pressure reducing device is coupled to the ventilating cavity. The pressure reducing device is configured to maintain the second pressure.