Abstract:
A gas turbine engine may comprise a first rotor with a primary flowpath along an outer diameter of the first rotor. A secondary flowpath may be radially inward from the primary flowpath. The secondary flowpath may pass through an opening through the first rotor. A blade may be disposed on a distal end of the first rotor. The blade may extend into the primary flowpath. A bleed tube may be in a wall of the primary flowpath and forward of the blade. The bleed tube may extend radially inward from the primary flowpath. The bleed tube may fluidly connect to the opening through the first rotor. A plenum may be aft of the blade and radially inward from the primary flowpath. The plenum may be fluidly connected to the opening through the first rotor. A second rotor may be aft of the plenum.
Abstract:
A blade for a gas turbine engine includes a body that includes an airfoil that extends in a radial direction from a 0% span position near an airfoil base to a 100% span position at an airfoil tip. The airfoil includes a first portion near the airfoil base with a first density and includes a second portion near the airfoil tip with a second density. The second density is less than the first density. The second portion includes an increasing true chord length in the radial direction.
Abstract:
A turbine injection system for a gas turbine engine includes a first end operable to receive air from a heat exchanger, a second end operable to distribute mixed cooling air to a turbine stage, an opening downstream of said first end and a mixing plenum downstream of said first end and said opening. The opening provides a direct fluid pathway into said turbine injection system.
Abstract:
The engine (10) includes at least one firing tube (12) wherein an exhaust stream (32) from the firing tube (12) drives a turbine (30). A scroll ejector attenuator (40) is secured between and in fluid communication with an outlet end (28) of the firing tube (12) and an inlet (76) of the turbine (30). The attenuator (40) defines a turning, narrowing passageway (72) that extends a distance the exhaust stream (32) travels before entering the turbine (30) to attenuate shockwaves and mix the pulsed exhaust stream (32) into an even stream with minimal temperature differences to thereby enhance efficient operation of the turbine (30) without any significant pressure decline of exhaust stream (32) pressure and without any backpressure from the attenuator (40) on the firing tube (12).
Abstract:
A gas turbine engine comprises a compressor section and a turbine section, the compressor section having a last compressor stage. High pressure cooling air is tapped from a location downstream of the last compressor stage and passed through a heat exchanger. Lower pressure air passes across the heat exchanger to cool the high pressure cooling air. A housing surrounds the compressor section and the turbine section and there being a space radially outwardly of the housing, and a mixing chamber received in the space radially outwardly of the housing, the mixing chamber receiving the high pressure cooling air downstream of the heat exchanger, and further receiving air at a temperature higher than a temperature of the high pressure cooling air downstream of the heat exchanger. Mixed air from the mixing chamber is returned into the housing and utilized to cool at least the turbine section.
Abstract:
A gas turbine engine includes a propulsor with a power turbine, a power turbine shaft extending forward therefrom defining a centerline axis, and a fan driven by the power turbine shaft. The fan is aligned with the centerline axis forward of the power turbine and is operatively connected to be driven by the power turbine through the power turbine shaft. A gas generator operatively connected to the propulsor is included downstream from the fan and forward of the power turbine, wherein the gas generator defines a generator axis offset from the centerline axis. The gas generator is operatively connected to the power turbine to supply combustion products for driving the power turbine.
Abstract:
An assembly includes a valve housing and a valve element such as a poppet valve. The valve housing includes a tubular duct and an annular valve seat disposed within the tubular duct. A first flowpath includes an inner bore of the annular valve seat. A second flowpath includes an aperture formed between the annular valve seat and the tubular duct. The poppet valve is configured to engage the annular valve seat and substantially close the first flowpath when the poppet valve is in a first position. The poppet valve is further configured to disengage the annular valve seat and at least partially open the first flowpath when the poppet valve is in a second position.
Abstract:
A turbine casing may comprise a casing body a heat pipe disposed in the casing body. The heat pipe may include a vaporization section and a condensation section. The vaporization section may be located forward the condensation section. The vaporization section may be located in a high pressure turbine region of the casing body. The condensation section may be located in a low pressure turbine region of the casing body.
Abstract:
A system includes a stator assembly including at least one stator airfoil. The system also includes a rotor assembly including at least one rotor airfoil configured to rotate about an axis. The system also includes an actuator coupled to the stator assembly and configured to actuate the stator assembly in an axial direction relative to the rotor assembly, creating an axial movement such that a clearance between the at least one rotor airfoil and the stator assembly varies based on an axial position of the stator assembly.
Abstract:
A mounting system for a gas turbine engine includes a compressor case portion, an inlet frame, an outlet frame, and a mounting structure. The compressor case portion houses rotatable compressor blades. The inlet frame connects to an inlet end of the compressor case. The outlet frame connects to an outlet end of the compressor case portion at an end opposite the compressor case inlet end. An axially fore mounting structure of the mounting structure connects to the inlet frame. An axially aft mounting structure of the mounting structure connects to the outlet frame. A bridging structure of the mounting structure is offset from the compressor case and connects the fore and aft mounting structures, thereby bridging engine loads across the inlet and outlet frames to reduce load induced distortion of the compressor case portion.