Abstract:
An assembly for a turbine engine includes a combustor wall. The combustor wall includes a shell, a heat shield and an annular land. The heat shield is attached to the shell. The land extends vertically between the shell and the heat shield. The land extends laterally between a land outer surface and an inner surface, which at least partially defines a quench aperture in the combustor wall. A lateral distance between the land outer surface and the inner surface varies around the quench aperture.
Abstract:
A combustor of a gas turbine engine includes a multiple of liner panels mounted to the support shell, at least one of the multiple of liner panels includes a first impingement cavity that operates at a first pressure and a second impingement cavity that operates at a second pressure different than the first pressure. A method of cooling a wall assembly within a combustor of a gas turbine engine includes directing air through a support shell and a liner panel that defines a first impingement cavity and a second impingement cavity. The first impingement cavity operates at a first pressure and the second impingement cavity operates at a second pressure that is different than the first pressure.
Abstract:
An annular grommet is provided for a wall assembly of a combustor section of a gas turbine engine. The annular grommet includes a wall that at least partially defines a chamber. A wall assembly within a gas turbine engine includes a liner panel with a hot side and a cold side. The wall assembly also includes an annular grommet with a passage wall and a flange wall transverse to the passage wall. The annular grommet includes a chamber therein. A method of cooling a wall assembly within a gas turbine engine includes injecting air through a chamber in an annular grommet.
Abstract:
An assembly for a turbine engine includes a combustor wall. The combustor wall includes a shell, a heat shield and an annular land. The heat shield is attached to the shell. The land extends vertically between the shell and the heat shield. The land extends laterally between a land outer surface and an inner surface, which at least partially defines a quench aperture in the combustor wall. A lateral distance between the land outer surface and the inner surface varies around the quench aperture.
Abstract:
A combustor wall is provided for a turbine engine. The combustor wall includes a shell and a heat shield that is attacked to the shell. The heat shield includes a rail and a cooling element connected to the rail in a cavity. The cavity extends in a vertical direction between the shell and the heat shield. The cavity fluidly couples a plurality of apertures in the shell with a plurality of apertures in the heat shield.
Abstract:
A wall assembly for use in a combustor of a gas turbine engine includes a transverse structure with at least one effusion passage that extends at an angle α therethrough. The effusion passage includes an inlet in an outer periphery of a wall. A wall assembly within a gas turbine engine include a liner panel generally parallel to a support shell and a transverse structure with at least one effusion passage that extends at an angle α therethrough. The effusion passage includes an inlet in an outer periphery of a wall that is transverse to the liner panel and the support shell.
Abstract:
An assembly for a turbine engine includes a combustor wall. The combustor wall includes a shell, a heat shield and an annular land. The heat shield is attached to the shell. The land extends vertically between the shell and the heat shield. The land extends laterally between a land outer surface and an inner surface, which at least partially defines a quench aperture in the combustor wall. A lateral distance between the land outer surface and the inner surface varies around the quench aperture.
Abstract:
A combustor for a turbine engine is provided that includes a combustor wall. The combustor wall includes a shell and heat shield, which is attached to the shell. One or more cooling cavities are defined between the shell and the heat shield, and fluidly couple a plurality of apertures defined in the shell with a plurality of apertures defined in the heat shield. The apertures in the heat shield include a first aperture and a second aperture. An angle of incidence between the first aperture and a surface of the heat shield is different than an angle of incidence between the second aperture and the surface.
Abstract:
Aspects of the disclosure are directed to a system for an engine having an axial centerline, comprising: a diffuser case, a turbine case, and a turbine vane support, where the diffuser case and the turbine case are coupled to one another via a substantially radially oriented flange, where the turbine vane support includes a heat shield for the flange, and where the turbine vane support includes a radially outward projecting tab that couples to the turbine case via a radial interference fit.
Abstract:
A combustor of a gas turbine engine includes a multiple of liner panels mounted to the support shell, at least one of the multiple of liner panels includes a first impingement cavity that operates at a first pressure and a second impingement cavity that operates at a second pressure different than the first pressure. A method of cooling a wall assembly within a combustor of a gas turbine engine includes directing air through a support shell and a liner panel that defines a first impingement cavity and a second impingement cavity. The first impingement cavity operates at a first pressure and the second impingement cavity operates at a second pressure that is different than the first pressure.