Abstract:
An assembly includes a case structure, a seal interfacing with the case structure, a first pin, and a main pin hole on one of the seal and the case structure. The first pin extends through the main pin hole and is fixed relative to the other of the seal and the case structure. The assembly also includes a second pin and a secondary pin hole on one of the seal and the case structure. The second pin extends through the secondary pin hole. A cross-sectional gap area between the second pin and the secondary pin hole is greater than a cross-sectional gap area between the first pin and the main pin hole. Also included is a bolt hole on one of the seal and the case structure. The bolt hole is circumferentially located between the main pin hole and the secondary pin hole.
Abstract:
A gas turbine engine mid-turbine frame includes an annular case that has a hole. A tie rod with a first end extends through the hole. The first end includes a threaded portion. A nut is secured to the threaded portion to clamp the tie rod to the annular case. A tab washer is arranged between the nut and the annular case. The tab washer interlocks the nut to the case to prevent relative rotation therebetween.
Abstract:
A turbine housing section includes a radially inner case centered on a first axis, and a radially outer case spaced radially outwardly of the inner case, and centered on a second axis. The first and second axes are offset relative to each other. A plurality of tie rods include a threaded nut received on a tie rod, with the plurality of tie rods connecting the inner and outer cases. The plurality of tie rods are spaced circumferentially about both of the first and second axes, and extend for distinct lengths between the inner and outer cases such that the inner and outer cases are held at a position wherein the first and second axes are offset
Abstract:
Systems and methods are disclosed herein for dressing centering a bearing compartment in a gas turbine engine. A nut may be inserted through an outer case of a gas turbine engine. The nut may be coupled to a strut which centers a bearing compartment. The nut may be rotated to achieve a desired tension on the strut to center the bearing compartment. A retaining plate comprising a collar may be positioned over the nut. A swaging tool comprising a swaging ramp may be positioned over the nut. The swaging tool may be forced against the retaining plate using a draw-in bolt. The swaging ramp may contact the collar and form indentations in the collar to lock the nut in place.
Abstract:
A turbine housing section includes a radially inner case centered on a first axis, and a radially outer case spaced radially outwardly of the inner case, and centered on a second axis. The first and second axes are offset relative to each other. A plurality of tie rods include a threaded nut received on a tie rod, with the plurality of tie rods connecting the inner and outer cases. The plurality of tie rods are spaced circumferentially about both of the first and second axes, and extend for distinct lengths between the inner and outer cases such that the inner and outer cases are held at a position wherein the first and second axes are offset.
Abstract:
Systems and methods are disclosed herein for dressing centering a bearing compartment in a gas turbine engine. A nut may be inserted through an outer case of a gas turbine engine. The nut may be coupled to a strut which centers a bearing compartment. The nut may be rotated to achieve a desired tension on the strut to center the bearing compartment. A retaining plate comprising a collar may be positioned over the nut. A swaging tool comprising a swaging ramp may be positioned over the nut. The swaging tool may be forced against the retaining plate using a draw-in bolt. The swaging ramp may contact the collar and form indentations in the collar to lock the nut in place.
Abstract:
A gas turbine engine mid-turbine frame includes an annular case which includes a first face. A tie rod includes a flange that is secured to the annular case. The flange has a perimeter that provides a second face that engages the first face and is configured to retain the flange in a generally axial direction.
Abstract:
A case for a gas turbine engine includes a cast case section cast case section configured to be welded between a forward case section and an aft case section.
Abstract:
A disclosed gas turbine engine includes a compressor section, a combustor section, a first turbine section and a second turbine section. An outer case structure for the gas turbine engine includes a single-piece case structure with a turbine case portion and a transition case portion. The transition case portion is integrally formed with the turbine case portion as a single part module. A combustor case houses the combustor and an aft turbine case supports the low pressure turbine. The outer case includes a forward end attachable to the combustor case and an aft end attachable to the aft turbine.