Abstract:
A gas turbine engine includes a first non-contacting dynamic rotor seal interfaced with a spool, the first non-contacting dynamic seal operates to seal adjacent to an outer diameter and a second non-contacting dynamic rotor seal with respect to the spool, the second non-contacting dynamic seal operates to seal adjacent to an inner diameter. A method of controlling a net thrust load on a thrust bearing of a gas turbine engine spool is also disclosed.
Abstract:
A hydrostatic seal and vibration damping apparatus for a gas turbine engine adapted to reduce vibrations during cold engine start-ups is disclosed. In one disclosed configuration, the vibration damping apparatus is comprised of a temperature sensitive control ring having a relatively high coefficient of thermal expansion adapted to expand quickly at relatively low temperatures to protect the hydrostatic seal during such gas turbine engine startups. At operational temperatures, the control ring is adapted to become separated from the hydrostatic sea.
Abstract:
A gas turbine engine and a retaining ring are disclosed. The gas turbine engine includes a rotating disc assembly, including a rotating disc, a cover plate, and a retaining ring disposed between the rotating disc and the cover plate, wherein the retaining ring axially retains the rotating disc and the cover plate, the retaining ring including a rotating disc face to interface with the rotating disc; a cover plate face to interface with the cover plate; and an end gap portion defining an end gap, wherein at least one of the rotating disc face, the cover plate face, and the end gap portion includes a stress reducing feature.
Abstract:
A hydrostatic seal and vibration damping apparatus for a gas turbine engine adapted to reduce vibrations during cold engine start-ups is disclosed. In one disclosed configuration, the vibration damping apparatus is comprised of a temperature sensitive control ring having a relatively high coefficient of thermal expansion adapted to expand quickly at relatively low temperatures to protect the hydrostatic seal during such gas turbine engine startups. At operational temperatures, the control ring is adapted to become separated from the hydrostatic sea.
Abstract:
According to an example embodiment, a gas turbine engine assembly includes, among other things, a compressor. A strut near the compressor includes a flow passage through a portion of the strut. The flow passage is configured to direct air from the compressor to another portion of the gas turbine engine. The flow passage has at least one surface feature that at least partially hinders some airflow through the flow passage.
Abstract:
A gas turbine engine includes a first non-contacting dynamic rotor seal interfaced with a spool, the first non-contacting dynamic seal operates to seal adjacent to an outer diameter and a second non-contacting dynamic rotor seal with respect to the spool, the second non-contacting dynamic seal operates to seal adjacent to an inner diameter. A method of controlling a net thrust load on a thrust bearing of a gas turbine engine spool is also disclosed.
Abstract:
According to an example embodiment, a gas turbine engine assembly includes, among other things, a compressor. A strut near the compressor includes a flow passage through a portion of the strut. The flow passage is configured to direct air from the compressor to another portion of the gas turbine engine. The flow passage has at least one surface feature that at least partially hinders some airflow through the flow passage.
Abstract:
A turbine housing section includes a radially inner case centered on a first axis, and a radially outer case spaced radially outwardly of the inner case, and centered on a second axis. The first and second axes are offset relative to each other. A plurality of tie rods include a threaded nut received on a tie rod, with the plurality of tie rods connecting the inner and outer cases. The plurality of tie rods are spaced circumferentially about both of the first and second axes, and extend for distinct lengths between the inner and outer cases such that the inner and outer cases are held at a position wherein the first and second axes are offset.
Abstract:
A retaining ring assembly for a gas turbine engine may include a first engine component and a second engine component. A retaining ring may be disposed between the first engine component and the second engine component. The retaining ring may be circumferentially discontinuous and may include a first terminal portion having at least one of a tapered or a contoured geometry. A thickness of the retaining ring at the first terminal portion may be less than a thickness of the retaining ring away from the first terminal portion.
Abstract:
A disclosed gas turbine engine includes a compressor section, a combustor section, a first turbine section and a second turbine section. An outer case structure for the gas turbine engine includes a single-piece case structure with a turbine case portion and a transition case portion. The transition case portion is integrally formed with the turbine case portion as a single part module. A combustor case houses the combustor and an aft turbine case supports the low pressure turbine. The outer case includes a forward end attachable to the combustor case and an aft end attachable to the aft turbine.