SELF-STANDING TIN SULFIDE FILM FOR FLEXIBLE BATTERIES

    公开(公告)号:US20200274157A1

    公开(公告)日:2020-08-27

    申请号:US15929608

    申请日:2020-05-12

    Inventor: Yang Yang

    Abstract: High-performance flexible batteries are promising energy storage devices for portable and wearable electronics. The major obstacle to develop flexible batteries is the shortage of flexible electrodes with excellent electrochemical performance. Another challenge is the limited progress in the flexible batteries beyond Li-ion because of safety concerns for the Li-based electrochemical system. Accordingly, a self-supported tin sulfide (SnS) porous film (PF) was fabricated as a flexible cathode material in Al-ion battery, which delivers a high specific capacity of 406 mAh/g. A capacity decay rate of 0.03% per cycle was achieved, indicating a good stability. The self-supported and flexible SnS film also shows an outstanding electrochemical performance and stability during dynamic and static bending tests. Microscopic images demonstrated that the porous structure of SnS is beneficial for minimizing the volume expansion during charge/discharge. This leads to an improved structural stability and superior long-term cyclability.

    LIQUID METAL BUFFER LAYER FOR LITHIUM BATTERIES

    公开(公告)号:US20200235405A1

    公开(公告)日:2020-07-23

    申请号:US16746398

    申请日:2020-01-17

    Abstract: Enabling the use of lithium metal as an anode electrode is a key for developing next generation energy storage device beyond current lithium ion battery technology. However, there are major obstacles that need to be overcome before it can be used in commercial applications; specifically, dendrite formation can short the cell, and electrolyte decomposition contributes to decreased battery lifetimes. Each obstacle can be overcome by coating a lithium metal anode with a liquid metal buffer that enables uniform deposition of lithium ions thereon, preventing dendritic growth and forming a stable solid electrolyte interface to separate the lithium metal anode from the electrolyte within a battery cell. The liquid metal buffer becomes a semi-liquid buffer when contributing to forming a solid electrolyte interface, and can regain its liquid state when the lithium ions flow to the cathode of the battery cell.

Patent Agency Ranking