Abstract:
In a stator-excited synchronous machine with laminated sector stator elements (SS1 or SS2), which are arranged one behind another at an axial distance and are winding-excited by in each case one excitation winding part (EW1 or EW2) of opposite polarity, the operating efficiency can be increased with low outlay when a permanent magnet arrangement (M) having a magnetization opposing the winding excitation in the sector stator elements is provided in the axial spacing chamber between the sector stator elements (SS1 or SS2); in order to lock the position of the magnet arrangement (M), the facing laminations of the magnet arrangement (M) have bent-away tongues (Z) gripping radially from below.
Abstract:
A cartridge is described having a cartridge casing (1) and having a propellant cup (4), which is inserted in the cartridge casing (1), receives a sub-caliber projectile (5) in a formfitting manner, and is manufactured from plastic, and which separates the projectile (5) from the propellant charge in the cartridge casing (1) and has axial separation points (15) along its jacket (10). To ensure an advantageous length for the projectile, it is suggested that the propellant cup (5) have at least one pocket (9), extending in a cavity between the projectile (5) and the cartridge casing (1) and/or in a cavity of the projectile (5) and open toward the base (2) of the cartridge casing (1), for receiving a part of the propellant charge.
Abstract:
A sub-caliber projectile is described for insertion into a projectile receptacle (8) having a projectile head (1) and a tail unit (2) forming guide vanes (4), which engages in a cavity of the projectile head (1). To provide advantageous construction conditions, it is suggested that the guide vanes (4) of the tail unit (2) extend up into the hollow projectile head (1) and the projectile head (1) be folded clamped into the groin area between the guide vanes (4).
Abstract:
A sub-caliber projectile is described for insertion into a projectile receptacle (8) having a projectile head (1) and a tail unit (2) forming guide vanes (4), which engages in a cavity of the projectile head (1). To provide advantageous construction conditions, it is suggested that the guide vanes (4) of the tail unit (2) extend up into the hollow projectile head (1) and the projectile head (1) be folded clamped into the groin area between the guide vanes (4).
Abstract:
A projectile (1) for a cartridge for hand-held firearms comprises a core (2) and a core jacket (3). The core (2) is made of a material which has a higher specific gravity than the material of the jacket (3). The core (2) and the jacket (3) are positively interconnected.In order to achieve a high penetrating power and a man-stopping effect and to ensure that the trajectory will be relatively short in case of a miss, the core (2) of the projectile is integrally formed on its periphery with deformed portions (6), which extend radially outwardly within a diameter range which is determined by the maximum core diameter and serve to establish a positive joint with the core jacket (3), and in a manner known per se the core jacket (3) is open toward the tip of the projectile.
Abstract:
In order to pick up in a simple manner which is reliable, and under rough operating conditions, a rotation of the rotor in a miniature motor excited by permanent magnets with magnet segments at a tangential distance with magnet segments distributed at the bore circumference of the stator, it is proposed to arrange in at least one pole gap between the magnet segment a measuring coil. A signal is induced by the pulsation of the stray field due to rotation of the rotor. The measuring coil is advantageously arranged in a non-magnetic, preferably plastic support body held between the individual poles or the magnet segments respectively.
Abstract:
In order to improve the interference suppression of an electric-motor auxiliary motor-vehicle drive, particularly in the direction of electromagnetic compatibility (EMV), a protective circuit branch (2, 3) with two Zener diodes (D1; D2) or with one varistor (V1) is provided parallel to the armature circuit branch (1) of the commutator motor (M), where, for reducing the number of external solder joints, the Zener-diodes (D1; D2) or the varistor (V1) are combined with the interference suppression capacitors (C1; C2) in common integration component (6) which has only three external terminals.