Abstract:
An electromechanical flywheel machine includes a flywheel mass and a motor-generator having a rotor rotatable about a stationery inner stator having stator windings.
Abstract:
The present invention relates to the field of electrical power generators. Structures of the present invention involve the use of steered flux and comprise uniquely simplified and efficient structures, including rotors free of windings and magnets, and stators with coils encircling, not individual stator poles, but multiple poles or the rotor itself. Magneto Motive Force used with the present invention can be provided by either self-bias or external-bias, including superconducting magnets. The present invention may involve the use of unipolar flux. The many embodiments of the present invention capitalize on innovative approaches to and reconfigurations of electrical power generation principles and structures.
Abstract:
A Back Torque reducing electrodynamic generator machine is disclosed. Some embodiments include a multi-pole stator comprising field windings and power windings and a rotor having a flux path element. For some embodiments, the flux path element is attached to a rotor shaft at an oblique angle to the longitudinal axis of the shaft. The flux path element has a shape that provides a uniform constant air gap between it and the stator poles when the shaft is rotated.
Abstract:
The invention relates to an electrical energy multi-generator comprising a series of radial magnetic circuits, each one formed by two columns (2 and 3) connected by a lower magnetic radius (4) and by another, upper magnetic radius, constituting the rotor (8) for opening, closing and varying the magnetic flux circulation. The outer column (3) is provided with an induction coil (6), and the central column (2) common to all of the radii is provided with an excitation coil (5). The multi-generator comprises a main drive wheel (10) that drives all of the rotors (8) in rotation, by means of a mechanical coupling and a motor, varying the circulation of the magnetic flux and generating an electromotive force in the induction coils (6). The central column (2) is common to all of the radial magnetic circuits. In this way, a substantial increase in the efficiency of the generator is obtained.
Abstract:
A system and method of manufacturing an electric machine comprising a rotor and a stator, wherein the stator comprises a fractional-slot concentrated winding having two sets of terminals, wherein a first set of terminals configures the fractional-slot concentrated winding to have a first pole-number (P1), and wherein a second set of terminals configures the fractional-slot concentrated winding to have a second pole number (P2) different from the first pole-number (P1).
Abstract:
An inductor-type synchronous machine having an axial gap structure, which has a shaft portion at the center thereof, the machine includes: a field-side stator which has a yoke made of a magnetic material and a field body protruding from the yoke in an axial direction of the shaft portion to form an N pole and an S pole in a radial direction; a rotor which has N pole inductors disposed so as to be opposed to the N pole formed by the field body and S pole inductors disposed so as to be opposed to the S pole formed by the field body; and an armature-side stator in which an armature coil is disposed so as to be opposed to the N pole inductors and the S pole inductors.
Abstract:
A single field rotor motor comprising a rotor mounted for rotation with respect to a stator. The stator has a plurality of stator poles each having a coil for creating a magnetic pole force. The rotor has a plurality of circumferentially spaced salient rotor poles formed thereon, wherein the flux within the rotor maintains a constant polarity. Magnetic means are provided for creating a pair of magnetic flux fields, wherein interaction of the pair of magnetic flux fields causes the magnetic flux fields to spray radially outward with respect to the rotor, thereby creating uniform magnetic polarity on the rotor poles. Circuit means are provided for alternately charging said stator coils to alternate the polarity of a given stator pole to alternately attract and repel said rotor poles to produce rotation of said rotor.
Abstract:
In certain embodiments, an electromechanical device includes a rotor having a rotational axis, and a stator disposed about the rotor. The stator may include a circumferentially laminated section comprising a plurality of circumferential segments disposed one after another in a circumferential direction relative to the rotational axis. The stator also may include a radially laminated section comprising a plurality of radial segments disposed one after another in a radial direction relative to the rotational axis. In addition, the stator may include an axially laminated section comprising a plurality of axial segments disposed one after another in an axial direction relative to the rotational axis.
Abstract:
A machine includes a shaft adapted to rotate about a longitudinal axis and formed of a magnetic material and a rotor assembly rotationally engaged with the shaft The rotor assembly includes a pair of rotor disks comprising a magnetic material, each of the rotor disks having a number of magnetic poles, the magnetic poles being spaced apart circumferentially. The rotor disks are coupled to the shaft for rotation about the shaft and generation of a rotating permeance wave. The machine further includes a stator assembly that includes a magnetic core stator disposed between the rotor disks, a number of armature windings supported on the magnetic core stator, and a stationary superconducting field coil disposed between the magnetic core stator and the shaft. The stationary superconducting field coil is configured as a stationary magneto-motive force (MMF) source for the rotating permeance wave produced by the rotor assembly to produce a rotating magnetic field.
Abstract:
A flywheel energy conversion device provides highly efficient conversion between kinetic and electrical energy. The flywheel produces increased output by providing armature coils in an air gap formed about the flywheel (both radial and axial embodiments are described). In preferred embodiments, field coils of a magnetic circuit are energized with DC drive current that creates homopolar flux within a rotating solid rotor having teeth cut from a flat disk. The total reluctance of the magnetic circuit and total flux remain substantially constant as the rotor rotates. The flux may travel radially outward and exit the flat disk through the teeth passing across an armature air gap. Airgap armature coils are preferably utilized in which the changing flux density (due to the rotating teeth) induces an output voltage in the coils. The flux is diffused before returning to the rotor in one of several ways such that core losses are effectively reduced, thereby enabling the flywheel to operate efficiently at high frequencies.