摘要:
A method, system and computer program product for inferring topic evolution and emergence in a set of documents. In one embodiment, the method comprises forming a group of matrices using text in the documents, and analyzing these matrices to identify evolving topics and emerging topics. The matrices includes a matrix X identifying a multitude of words in each of the documents, a matrix W identifying a multitude of topics in each of the documents, and a matrix H identifying a multitude of words for each of the multitude of topics. These matrices are analyzed to identify the evolving and emerging topics. In an embodiment, two forms of temporal regularizers are used to help identify the evolving and emerging topics. In another embodiment, a two stage approach involving detection and clustering is used to help identify the evolving and emerging topics.
摘要:
A method, system and computer program product are disclosed for predicting influence in a social network. In one embodiment, the method comprises identifying a set of users of the social network, and identifying a subset of the users as influential users based on defined criteria. A multitude of measures are identified as predictors of which ones of the set of users are the influential users. These measures are aggregated, and a composite predictor model is formed based on this aggregation. This composite predictor model is used to predict which ones of the set of users will have a specified influence in the social network in the future. In one embodiment, the specified influence is based on messages sent from the users, and for example, may be based on the number of the messages sent from each user that are re-sent by other users.
摘要:
A first mapping function automatically maps a plurality of documents each with a concept of ontology to create a documents-to-ontology distribution. An ontology-to-class distribution that maps concepts in the ontology to class labels, respectively, is received, and a classifier is generated that labels a selected document with an associated class identified based on the documents-to-ontology distribution and the ontology-to-class distribution.
摘要:
A model for impact analysis determines impact of part removal from a product. An entity is identifies that includes a plurality of sub-components. One or more performance measures associated with the entity are identified. One or more of the sub-components to be removed from the entity are identified. A substitution impact function is defined. Impact on said one or more performance measures is determined using the substitution impact function.
摘要:
A novel domain adaption/transfer learning method applied to the problem of classifying abbreviated documents, e.g., short text messages, instant messages, tweets. The method uses a large number of multi-labeled examples (source domain) to improve the learning on the partial observations (target domain). Specifically, a hidden, higher-level abstraction space is learned that is meaningful for the multi-labeled examples in the source domain. This is done by simultaneously minimizing the document reconstruction error and the error in a classification model learned in the hidden space using known labels from the source domain. The partial observations in the target space are then mapped to the same hidden space, and classified into the label space determined by the source domain.
摘要:
A system and method a Multi-Task Multi-View (M2TV) learning problem. The method uses the label information from related tasks to make up for the lack of labeled data in a single task. The method further uses the consistency among different views to improve the performance. It is tailored for the above complicated dual heterogeneous problems where multiple related tasks have both shared and task-specific views (features), since it makes full use of the available information.
摘要:
Transfer learning is the task of leveraging the information from labeled examples in some domains to predict the labels for examples in another domain. It finds abundant practical applications, such as sentiment prediction, image classification and network intrusion detection. A graph-based transfer learning framework propagates label information from a source domain to a target domain via the example-feature-example tripartite graph, and puts more emphasis on the labeled examples from the target domain via the example-example bipartite graph. An iterative algorithm renders the framework scalable to large-scale applications. The framework propagates the label information to both features irrelevant to the source domain and unlabeled examples in the target domain via common features in a principled way.
摘要:
System, method and computer program product provides a novel domain adaption/transfer learning approach applied to the problem of classifying abbreviated documents, e.g., short text messages, instant messages, tweets. The proposed method uses a large number of multi-labeled examples (source domain) to improve the learning on the partial observations (target domain). Specifically, a hidden, higher-level abstraction space is learned that is meaningful for the multi-labeled examples in the source domain. This is done by simultaneously minimizing the document reconstruction error and the error in a classification model learned in the hidden space using known labels from the source domain. The partial observations in the target space are then mapped to the same hidden space, and classified into the label space determined by the source domain. Exemplary results provided for a Twitter dataset demonstrate that the method identifies meaningful hidden topics and provides useful classifications of specific tweets.
摘要:
Transfer learning is the task of leveraging the information from labeled examples in some domains to predict the labels for examples in another domain. It finds abundant practical applications, such as sentiment prediction, image classification and network intrusion detection. A graph-based transfer learning framework propagates label information from a source domain to a target domain via the example-feature-example tripartite graph, and puts more emphasis on the labeled examples from the target domain via the example-example bipartite graph. An iterative algorithm renders the framework scalable to large-scale applications. The framework propagates the label information to both features irrelevant to the source domain and unlabeled examples in the target domain via common features in a principled way.
摘要:
Transfer learning is the task of leveraging the information from labeled examples in some domains to predict the labels for examples in another domain. It finds abundant practical applications, such as sentiment prediction, image classification and network intrusion detection. A graph-based transfer learning framework propagates label information from a source domain to a target domain via the example-feature-example tripartite graph, and puts more emphasis on the labeled examples from the target domain via the example-example bipartite graph. An iterative algorithm renders the framework scalable to large-scale applications. The framework propagates the label information to both features irrelevant to the source domain and unlabeled examples in the target domain via common features in a principled way.