摘要:
A system and method a Multi-Task Multi-View (M2TV) learning problem. The method uses the label information from related tasks to make up for the lack of labeled data in a single task. The method further uses the consistency among different views to improve the performance. It is tailored for the above complicated dual heterogeneous problems where multiple related tasks have both shared and task-specific views (features), since it makes full use of the available information.
摘要:
A system and method a Multi-Task Multi-View (M2TV) learning problem. The method uses the label information from related tasks to make up for the lack of labeled data in a single task. The method further uses the consistency among different views to improve the performance. It is tailored for the above complicated dual heterogeneous problems where multiple related tasks have both shared and task-specific views (features), since it makes full use of the available information.
摘要:
A first mapping function automatically maps a plurality of documents each with a concept of ontology to create a documents-to-ontology distribution. An ontology-to-class distribution that maps concepts in the ontology to class labels, respectively, is received, and a classifier is generated that labels a selected document with an associated class identified based on the documents-to-ontology distribution and the ontology-to-class distribution.
摘要:
Transfer learning is the task of leveraging the information from labeled examples in some domains to predict the labels for examples in another domain. It finds abundant practical applications, such as sentiment prediction, image classification and network intrusion detection. A graph-based transfer learning framework propagates label information from a source domain to a target domain via the example-feature-example tripartite graph, and puts more emphasis on the labeled examples from the target domain via the example-example bipartite graph. An iterative algorithm renders the framework scalable to large-scale applications. The framework propagates the label information to both features irrelevant to the source domain and unlabeled examples in the target domain via common features in a principled way.
摘要:
A first mapping function automatically maps a plurality of documents each with a concept of ontology to create a documents-to-ontology distribution. An ontology-to-class distribution that maps concepts in the ontology to class labels, respectively, is received, and a classifier is generated that labels a selected document with an associated class identified based on the documents-to-ontology distribution and the ontology-to-class distribution.
摘要:
Transfer learning is the task of leveraging the information from labeled examples in some domains to predict the labels for examples in another domain. It finds abundant practical applications, such as sentiment prediction, image classification and network intrusion detection. A graph-based transfer learning framework propagates label information from a source domain to a target domain via the example-feature-example tripartite graph, and puts more emphasis on the labeled examples from the target domain via the example-example bipartite graph. An iterative algorithm renders the framework scalable to large-scale applications. The framework propagates the label information to both features irrelevant to the source domain and unlabeled examples in the target domain via common features in a principled way.
摘要:
Transfer learning is the task of leveraging the information from labeled examples in some domains to predict the labels for examples in another domain. It finds abundant practical applications, such as sentiment prediction, image classification and network intrusion detection. A graph-based transfer learning framework propagates label information from a source domain to a target domain via the example-feature-example tripartite graph, and puts more emphasis on the labeled examples from the target domain via the example-example bipartite graph. An iterative algorithm renders the framework scalable to large-scale applications. The framework propagates the label information to both features irrelevant to the source domain and unlabeled examples in the target domain via common features in a principled way.
摘要:
A method, system and computer program product for inferring topic evolution and emergence in a set of documents. In one embodiment, the method comprises forming a group of matrices using text in the documents, and analyzing these matrices to identify a first group of topics as evolving topics and a second group of topics as emerging topics. The matrices includes a first matrix X identifying a multitude of words in each of the documents, a second matrix W identifying a multitude of topics in each of the documents, and a third matrix H identifying a multitude of words for each of the multitude of topics. These matrices are analyzed to identify the evolving and emerging topics. In an embodiment, the documents form a streaming dataset, and two forms of temporal regularizers are used to help identify the evolving topics and the emerging topics in the streaming dataset.
摘要:
A method for automatically determining an Internet home page corresponding to a named entity identified by a specified descriptor including building a trained machine-learning model, generating candidate matches from the specified descriptor, wherein each candidate match includes an Internet address, extracting content-based features from websites associated with the Internet addresses of the candidate matches, determining a model score for each candidate match based on the content-based features using the trained machine-learning model, and determining a match from among the candidate matches according to the scores, wherein the match is returned as the Internet home page corresponding to the named entity.
摘要:
A method for automatically determining an Internet home page corresponding to a named entity identified by a specified descriptor including building a trained machine-learning model, generating candidate matches from the specified descriptor, wherein each candidate match includes an Internet address, extracting content-based features from websites associated with the Internet addresses of the candidate matches, determining a model score for each candidate match based on the content-based features using the trained machine-learning model, and determining a match from among the candidate matches according to the scores, wherein the match is returned as the Internet home page corresponding to the named entity.