摘要:
A cellular telephone IC includes a baseband processing module, an RF section, an audio codec, a keypad interface, a memory interface, and a display interface. The baseband processing module and RF section function to convert an outbound voice signal into an outbound RF voice signal, to convert an inbound RF voice signal into an inbound voice signal, to convert outbound data into an outbound RF data signal, and to convert an inbound RF data signal into inbound data. The audio codec section converts inbound analog voice signals into the inbound voice signals and converts the outbound voice signals into outbound analog voice signals. The keypad interface produces the outbound data based on received inputs. The display interface provides the inbound data to an off-chip display.
摘要:
An adjustable antenna interface includes a single-ended to differential conversion circuit, an adjustable impedance matching circuit, an RF differential switch, and an input. The single-ended to differential conversion circuit converts inbound RF signals from single-ended signals to differential signals and converts outbound RF signals from differential signals to single-ended signals. The adjustable impedance matching circuit provides an impedance based on an impedance control signal. The RF differential switch provides the differential outbound RF signals from the IC to the single-ended to differential conversion circuit in accordance with a first antenna control signal and provides the differential inbound RF signals from the single-ended to differential conversion circuit to the IC in accordance with a second antenna control signal. The input receives the first antenna control signal, the second antenna control signal, and the impedance control signal from the IC.
摘要:
An adjustable antenna interface includes a single-ended to differential conversion circuit, an adjustable impedance matching circuit, an RF differential switch, and an input. The single-ended to differential conversion circuit converts inbound RF signals from single-ended signals to differential signals and converts outbound RF signals from differential signals to single-ended signals. The adjustable impedance matching circuit provides an impedance based on an impedance control signal. The RF differential switch provides the differential outbound RF signals from the IC to the single-ended to differential conversion circuit in accordance with a first antenna control signal and provides the differential inbound RF signals from the single-ended to differential conversion circuit to the IC in accordance with a second antenna control signal. The input receives the first antenna control signal, the second antenna control signal, and the impedance control signal from the IC.
摘要:
A single chip wireless transceiver operable to perform voice, data and radio frequency (RF) processing is provided. This processing may be divided between various processing modules. This single chip includes a processing module having an ARM microprocessor and a digital signal processor (DSP), an RF section, and an interface module. The processing module converts an outbound voice signal into an outbound voice symbol stream, converts an inbound voice symbol stream into an inbound voice signal, converts outbound data into an outbound data symbol stream, and converts an inbound data symbol stream into inbound data. These functions may be divided between the ARM microprocessor and DSP, where the DSP supports physically layer type applications and the ARM microprocessor supports higher layer applications. Further bifurcation may be based on voice applications, data applications, and/or RF control. The RF section converts an inbound RF voice signal into the inbound voice symbol stream, converts the outbound voice symbol stream into an outbound RF voice signal, converts an inbound RF data signal into the inbound data symbol stream, and converts the outbound data symbol stream into an outbound RF data signal. The interface module provides coupling between the processing module, the RF section, and with off-chip circuits.
摘要:
An on-chip baseband-to-RF interface includes a receive/transmit section, a control section, and a clock section. The receive/transmit section, when in a receive mode, provides the stream of inbound symbols from the RF circuit to the baseband processing module and, when in a transmit mode, provides the stream of outbound symbols from the baseband processing module to the RF circuit. The control section provides a control communication path between the baseband processing module and the RF circuit. The clock section provides a clock communication path between the baseband processing module and the RF circuit.
摘要:
A single chip wireless transceiver operable to perform voice, data and radio frequency (RF) processing is provided. This processing may be divided between various processing modules. This single chip includes a processing module having an ARM microprocessor and a digital signal processor (DSP), an RF section, and an interface module. The processing module converts an outbound voice signal into an outbound voice symbol stream, converts an inbound voice symbol stream into an inbound voice signal, converts outbound data into an outbound data symbol stream, and converts an inbound data symbol stream into inbound data. These functions may be divided between the ARM microprocessor and DSP, where the DSP supports physically layer type applications and the ARM microprocessor supports higher layer applications. Further bifurcation may be based on voice applications, data applications, and/or RF control. The RF section converts an inbound RF voice signal into the inbound voice symbol stream, converts the outbound voice symbol stream into an outbound RF voice signal, converts an inbound RF data signal into the inbound data symbol stream, and converts the outbound data symbol stream into an outbound RF data signal. The interface module provides coupling between the processing module, the RF section, and with off-chip circuits.
摘要:
A communication device includes a voice data and RF integrated circuit (IC) that includes a memory module that stores a least one application as a plurality of operational instructions, the at least one application having a plurality of power modes that each correspond to one of a plurality of use characteristics. A processing module executes the plurality of operational instructions and determines a selected one of the plurality of power modes based on current use characteristics of the at least one application, and the generates a power mode signal based on the selected one of the plurality of power modes. An off-chip power management circuit receives the power mode signal and that generates a plurality of power supply signals to the voice data and RF IC based on the power mode signal.
摘要:
An integrated circuit (IC) includes at least one baseband section, at least one radio frequency (RF) section, and an interface module. The interface module is operable to couple the at least one baseband section to the at least one RF section, wherein the interface module includes an analog interface module and a digital interface module.
摘要:
An integrated circuit (IC) includes a first processing module that converts inbound data into an inbound digital audio signal and converts an outbound digital audio signal into outbound data. A second processing module performs a user application that includes at least one of generating of an inbound analog audio signal and generating an outbound analog audio signal. A third processing module performs an operating system algorithm to coordinate operation of at least one user application.
摘要:
An integrated circuit (IC) includes an RF section, a DSP, and a plurality of processors. The RF section and the DSP process an inbound RF signal to produce inbound data and process outbound data to produce an outbound RF signal. In addition, the DSP converts an outbound analog audio signal into an outbound digital audio signal and converts an inbound digital audio signal into an inbound analog audio signal. A first processor converts the inbound data into the inbound digital audio signal and converts the outbound digital audio signal into the outbound data. A second processor performs a user application that includes at least one of generation of the inbound analog audio signal and generation of the outbound analog audio signal and performs an operating system algorithm to coordinate operation of the user application.