摘要:
A method for establishing wireless communication between a transmitter and a receiver in a wireless communication system is disclosed. The receiver includes an adaptive array that has at least two antennas. Each antenna receives a signal and produces a received signal. The transmitter includes at least two transmission channels for communicating the signal from the transmitter to the receiver. The wireless communication system suppresses interference at the receiver by applying an interference suppression technique when combining the received signals. The selection of a channel at the transmitter is based on the channel performance at the receiver for each transmission channel. The channel performance is based on a combining technique different from the interference suppression technique.
摘要:
A communication device includes a voice data and RF integrated circuit (IC) that includes a memory module that stores a plurality of applications corresponding to a plurality of uses of the communication device. A processing module executes a selected one of the plurality of applications and selects one of a plurality of power modes based on a current one of the plurality of uses of the communication device corresponding to the selected one of the plurality of applications. The processing module generates a power mode signal based on the selected one of the plurality of power modes. An off-chip power management circuit receives the power mode signal and that generates a plurality of power supply signals to the voice data and RF IC based on the power mode signal.
摘要:
A real-time/non-real-time/RF IC includes first and second baseband processing modules, an RF section, a wireline interface, and a bus structure. The first baseband processing module converts real-time outbound data into real-time outbound symbols and converts real-time inbound symbols into real-time inbound data. The second baseband processing module converts non-real-time outbound data into non-real-time outbound symbols and converts non-real-time inbound symbols into non-real-time inbound data. The RF section converts the real-time outbound symbols into real-time outbound RF signals, converts real-time inbound RF signals into the real-time inbound symbols, converts the non-real-time outbound symbols into non-real-time outbound RF signals, and converts non-real-time inbound RF signals into the non-real-time symbols. The wireline interface couples the non-real-time outbound data, the non-real-time inbound data, the real-time outbound data, and/or the real-time inbound data to an off-chip wireline connection.
摘要:
A voice data and RF integrated circuit (IC) includes an RF transceiver module that produces received data based on a received RF signal and that produces a transmitted RF signal based on transmit data. A memory module includes a first read only memory (ROM) segment for storing a first plurality of operational instructions, and a first random access memory (RAM) segment for storing a second plurality of operational instructions. A first processing module executes the plurality of operational instructions that include baseband processing to generate input data from the received data, and to produce the transmit data from input data. A first memory interface provides direct downloading of the second plurality of operational instructions from the external memory to the first RAM segment.
摘要:
Equalizer training method using re-encoded bits and known training sequences. A multi-branch equalizer processing module is operable to cancel interference associated with received radio frequency (RF) burst(s) (e.g., using at least a first equalizer processing branch and a second equalizer processing branch). The first equalizer processing branch is operable to be trained based upon known training sequences and to equalize the received RF burst. The second equalizer processing branch uses at least partially re-encoded data bits to train linear equalizer(s) within the second equalizer processing branch. A buffer may initially store the received RF burst(s), which are retrieved and equalized by the second equalizer processing branch once the linear equalizer(s) are trained. The cooperation operation of these and other various components allows interfering signals to be cancelled and for more accurate processing of the received RF bursts to occur.
摘要:
A baseband processing module includes TX processing components, a processor, memory, an RX interface, and a cell searcher module. The TX processing components receive outbound data, process the outbound data to produce a baseband TX signal, and output the baseband TX signal to a RF front end of the RF transceiver. The RX interface receives a baseband RX signal from the RF front end carrying a WCDMA signal. The cell searcher module receives the baseband RX signal, scans for WCDMA energy within the baseband RX signal, acquires slot synchronization to the WCDMA signal based upon correlation with a Primary Synchronization Channel (PSCH) of the WCDMA signal, acquires frame synchronization to, and identify a code group of, the WCDMA signal based upon correlation with a Secondary Synchronization Channel (SSCH) of the WCDMA signal, and identifies the scrambling code of the WCDMA signal based upon correlation with a Common Pilot Channel (CPICH) of the WCDMA signal.
摘要:
A radio frequency integrated circuit (RFIC) includes a low noise amplifier that amplifies an inbound radio frequency (RF) signal to produce an amplified RF signal. A down conversion module converts the amplified RF signal to a down converted signal based on a local oscillation. An analog to digital conversion (ADC) module coupled to convert the down converted signal into a digital signal. A baseband processing module converts the digital signal into inbound data, wherein at least one function of the baseband processing module is clocked by a plurality of baseband clock signals A clock module produces the plurality of baseband clock signals, wherein the clock module detects an interference condition when frequency dependent noise components associated with at least one of the plurality of baseband clock signals are inside a frequency band associated with the inbound RF signal, and spreads the spectrum of the at least one of the plurality of baseband clock signals when the interference condition is detected.
摘要:
RF communications received by a wireless terminal from a servicing base station are used to determine the channel quality such as reported bit error probability (BEP). The RF communications may be in the form of RF bursts that are part of a data frame. An estimated BEP may be determined from the signal to noise ratio (SNR) of the RF bursts and or a sequence of soft decisions extracted from the RF bursts, and their historical performance. The SNR maps to an estimated BEP based upon the modulation format of the RF bursts. The soft decisions decode to produce a data block. When the soft decisions decoded favorably, the re-encoded data block produces a sequence of re-encoded decisions. Comparing the re-encoded decisions to the soft decisions yields a re-encoded bit error (RBER). The reported BEP may be based upon the estimated BEP, RBER, and/or RBER threshold. The RBER threshold may be adaptively incremented or decremented depending upon whether or not the RF communications were properly decoded. The size of the increment or decrement may be based on the channel quality.
摘要:
A method to perform DC compensation on a Radio Frequency (RF) burst transmitted between a servicing base station and a wireless terminal in a cellular wireless communication system that first receives the RF burst modulated according to either a first or second modulation format. Samples from the RF burst, taken from the training sequence, are produced and averaged to produce a DC offset estimate. The DC offset estimate is then subtracted from each of the samples. The modulation format of RF burst may then be identified from the samples. Depending on the identified modulation format, the DC offset estimate may be re-added to the samples when a particular modulation format is identified as the modulation format of the RF burst. This decision is made based on how well various components within the wireless terminal perform DC offset compensation.
摘要:
The present invention provides a multi-branch equalizer processing module operable to cancel interference associated with received radio frequency (RF) burst(s). This multi-branch equalizer processing module includes both a first equalizer processing branch and a second equalizer processing branch. The first equalizer processing branch is operable to be trained based upon known training sequences and equalize the received RF burst. This results in soft samples or decisions which in turn may be converted to data bits. The soft samples are processed with a de-interleaver and channel decoder, where the combination is operable to produce a decoded frame of data bits from the soft samples. A re-encoder may re-encode the decoded frame to produce re-encoded or at least partially re-encoded data bits. An interleaver then processes the at least partially re-encoded data bits to produce and at least partially re-encoded burst. The second equalizer processing branch uses the at least partially re-encoded data bits to train linear equalizer(s) within the second equalizer processing branch. A buffer may initially store the received RF burst(s), which are retrieved and equalized by the second equalizer processing branch once the linear equalizer(s) are trained. This results in alternate soft samples or decisions which in turn may be converted to alternate data bits. The alternate soft samples are processed with the de-interleaver and channel decoder, where the combination is operable to produce an alternate decoded frame of data bits from the alternate soft samples. This allows interfering signals to be cancelled and more accurate processing of the received RF bursts to occur.