Abstract:
A quadcopter has a fuselage and four rotors, each defining a thrust vector. An onboard camera system includes a gimbal with a roll axis and a pitch axis. Right side motors are mounted with a dihedral angle so that their respective thrust vectors intersect at a common focal point located above the fuselage. Left side motors are mounted with a dihedral angle so that their respective thrust vectors intersect at a common focal point located above the fuselage. The tilted thrust vectors provide yaw stability which allows flight yaw control to be used as yaw control of the onboard camera.
Abstract:
A method is provided for allowing UAV pilots to create a flight path profile and upload the same to a central server, allowing access to other UAV pilots. The method includes the steps of having creating a first flight path profile, uploading the flight path profile to a central server, allowing access of the flight path profile to others, and downloading the first flight path profile to a UAV so that the UAV follows the downloaded first flight profile. The flight path profile includes control of three dimensional motion and orientation of a UAV, control of the view orientation of a camera, as well as other camera settings such as video and still image modes, frame rate, and exposure, altitude and speed and dwell times.
Abstract:
A unmanned aerial vehicle (UAV) includes a body with plurality of motors, a motor controlling circuit, a microprocessor for controlling the flight state of the UAV, a plurality of motion sensors, and a capacitive touch sensor incorporated into a battery. When the user grasps the UAV by the battery, the touch sensor is activated and the microprocessor alters the flight state of the UAV.
Abstract:
Embodiments discussed herein provide improved control of an unmanned aerial vehicle camera gimbal. In some embodiments, a linear control circuit is described that uses an operational amplifier that allows the system to retain its passive isolation of high frequency disturbances.
Abstract:
An unmanned aerial vehicle (UAV) includes a fuselage that supports breakaway components that are attached using magnets. One component is a battery pack which powers the vehicle. Another component is a rotor set including two identical pod pairs that each support a motor and a propeller. Each motor is attached to a hub assembly that includes a plurality of spokes captured in a motor hub and sandwiched by a rigid motor printed circuit board on top and a rigid hub plate. The hub assembly construction is rigid in plane and functions to keep the motor firmly stable during operation. The hub assembly is compliant and resilient when impacted parallel to the plane. Other features of the pod pairs encage the otherwise dangerous spinning propeller. This allows the vehicle to operate with a higher level of safety than conventional UAVs.
Abstract:
An unmanned aerial vehicle (UAV) includes a body that supports breakaway components. One component is a battery pack which powers the vehicle. Two other components are pod assemblies, which each include at least one motor and one propeller. Each motor is supported within a support ring using spokes or filament. The spokes keep the motor firmly stable during operation and also effectively encage the otherwise dangerous spinning propeller. This allows the vehicle to operate with a higher level of safety than conventional UAVs. The breakaway feature can be established using magnets.