Abstract:
Protective clips for movable partitions include a guard portion that protrudes from a top major surface of a base portion. The guard portion extends along the top major surface proximate to a front side of the base portion. The guard portion also may extend along the top major surface proximate to at least one end side surface at a longitudinal end of the base portion. Movable partitions include one or more such protective clips. The protective clips optionally may be used to attach a sweep strip to panels of a movable partition. Methods of forming such protective clips include molding the clips within a mold cavity.
Abstract:
A leading end assembly for a movable partition may include a frame, an exterior skin coupled to the frame for covering a leading surface and two opposing side surfaces of the frame, the exterior skin including a leading member forming at least a portion of a leading surface of the leading end assembly and at least two side members, each side member being formed separately from the leading member and forming at least a portion of a lateral side portion of the leading end assembly. Movable partitions may include leading end assemblies and leading end assemblies may be formed by related methods.
Abstract:
Movable partition systems include a vertical alignment structure including at least one roller element coupled to a portion of a movable partition and a ramp configured to abut against the at least one roller element to vertically align the portion of the movable partition to engage with a strike plate. Methods of vertically aligning the movable partition include coupling at least one vertical alignment structure to the movable partition including coupling at least one structural frame member to the movable partition and coupling the at least one roller element to the at least one structural frame member and installing at least one ramp to an overhead structure configured to abut the at least one roller element and vertically align a leading end of the movable partition.
Abstract:
Movable partition systems include a vertical alignment structure including at least one roller element coupled to a portion of a movable partition and a ramp configured to abut against the at least one roller element to vertically align the portion of the movable partition to engage with a strike plate. Methods of vertically aligning the movable partition include coupling at least one vertical alignment structure to the movable partition including coupling at least one structural frame member to the movable partition and coupling the at least one roller element to the at least one structural frame member and installing at least one ramp to an overhead structure configured to abut the at least one roller element and vertically align a leading end of the movable partition.
Abstract:
A movable partition system includes a movable partition, a floating jamb attached to an end of the movable partition and located within a pocket configured to retain the movable partition when in a retracted position, at least two base plates attached to the floating jamb, and at least two jamb stops attached to opposing interior walls of the pocket. Each of the at least two jamb stops are configured to engage a respective base plate of the floating jamb, wherein the floating jamb, the at least two base plates, and the at least two jamb stops are configured such that disengaging the floating jamb from a secure position within the pocket when the movable partition is in an extended position requires disengaging one of the at least two jamb stops from the respective base plate on each side of the movable partition. Methods of providing a security barrier are disclosed.
Abstract:
A wireless transmitter including a rotating actuator, a plate connected to the rotating actuator, and a wireless switch. The wireless switch may include at least one actuating panel and at least one transducer element. The at least one transducer element may be configured to convert mechanical energy to electrical energy. The at least one actuating panel may be configured to transmit mechanical energy to the at least one transducer element. The plate may be configured to contact the wireless switch at a rotational end point of the rotating actuator.
Abstract:
A leading end assembly for a movable partition may include a frame, an exterior skin coupled to the frame for covering a leading surface and two opposing side surfaces of the frame, the exterior skin including a leading member forming at least a portion of a leading surface of the leading end assembly and at least two side members, each side member being formed separately from the leading member and forming at least a portion of a lateral side portion of the leading end assembly. Movable partitions may include leading end assemblies and leading end assemblies may be formed by related methods.
Abstract:
A motor control system comprises a motor control circuit, a non-transitory storage medium and a processing circuitry. The storage medium is configured to store a current threshold profile that is indicative of a current requirement of the motor control circuit for an operational cycle of a motor. The processing circuitry is configured to adjust the stored current threshold profile based on a change to the operational cycle of the motor (e.g., from standard to non-standard).
Abstract:
Panel assemblies for movable partitions include a panel and a protective clip covering at least a portion of a bottom surface of the panel. The panel includes channels defined between lateral edge portions and a back side surface of the panel. Tabs of the protective clip are positioned within corresponding channels. Movable partitions include at least one panel and at least one protective clip, which is assembled with the at least one panel and is coupled to a back side surface of the at least one panel. Tabs of the back portion of the at least one protective clip are inserted at least partially within two opposing channels of the at least one panel. Methods of attaching a protective clip to a panel of a movable partition include positioning tabs extending from longitudinal ends of the back portion of the protective clip within channels of the panel.
Abstract:
Automatic drive systems for movable partitions may comprise a floating jamb configured to attach to panels of a movable partition and glide within a pocket. A motor may be configured to extend the movable partition. The motor may be configured for mounting in the pocket on a back side of the floating jamb opposing a front side of the floating jamb to which the panels of the movable partition are configured to attach. An electronics enclosure may be sized and configured to contain electronics to connect to the motor. The electronics enclosure may be configured for positioning in the pocket on the backside in a location offset from the motor. A depth of the electronics enclosure, as measured in a direction in which the floating jamb is mounted to glide, may be less than or equal to a depth of the motor, as measured in the same direction.