Abstract:
A non-circular sprocket component comprises a rotor (11) having a plurality of teeth (16) arranged around the perimeter of the rotor, each tooth having a crown (9), and each pair of adjacent teeth having a valley (8) therebetween. The crowns of the teeth lie on a curved envelope forming the perimeter of the rotor. The perimeter has a non-circular profile having at least two protruding portions (22, 23) alternating with receding portions (24, 25). The distance between the midpoints (V) of the crowns (9) of each pair of adjacent teeth is substantially the same. The profile of the valley (8) between each pair of adjacent teeth is substantially the same. The distance between the midpoint (V), of each crown (9) and the axis (A) of the rotor varies around the perimeter to produce the said non-circular profile.
Abstract:
A vibration canceling rotor and a synchronous drive employing such rotors is provided wherein 1.5 order vibrations in the synchronous drive can be reduced by employing the vibration canceling rotor on a rotating member of the synchronous drive that rotates at one half the speed of another rotating member of the drive. To cancel 1.5 order vibrations, the rotor has a three-lobed non-circular radial profile to engage the continuous-loop elongate drive structure of the synchronous drive. To cancel 1.5 order and 3rd order vibrations, the rotor has a six lobed non-circular radial profile overlaid on the three lobed profile to create a non-circular composite profile to engage the continuous-loop elongate drive structure. The continuous-loop elongate drive structure can be a chain or a toothed belt.
Abstract:
A synchronous drive apparatus and method, wherein the apparatus comprises a plurality of rotors comprising at least a first and a second rotor. The first rotor has a plurality of teeth for engaging the engaging sections of an elongate drive structure, and the second rotor has a plurality of teeth for engaging the engaging section of the elongate drive structure. A rotary load assembly is coupled to the second rotor. The elongate drive structure engages about the first and second rotors. The first rotor is arranged to drive the elongate drive structure and the second rotor is arranged to be driven by the elongate drive structure. One of the rotors has a non-circular profile having at least two protruding portions alternating with receding portions. The rotary load assembly is such as to present a periodic fluctuating load torque when driven in rotation, in which the angular positions of the protruding and receding portions of the non-circular profile relative to the angular position of the second rotor, and the magnitude of the eccentricity of the non-circular profile, are such that the non-circular profile applies to the second rotor an opposing fluctuating corrective torque which reduces or substantially cancels the fluctuating load torque of the rotary load assembly.
Abstract:
A stereo computer system with resources to produce and record surround sound channels. Such surround sound channels are played or recorded using an audio card added to the computer system, which audio card controls additional speakers and/or microphones. Software for redirecting instructions from existing stereo application programs and sending these instructions to the existing audio device driver and the additional audio device driver is provided. Resources for processing the digital audio data for either extracting surround sound channels from two channel data provided by the application, or for encoding two sets of two channel audio data recorded by the two audio cards is also included.
Abstract:
A tensioner assembly for a drive system, including a chain, of an internal combustion engine, includes a housing that is fixedly secured to the internal combustion engine. A piston is disposed within the housing. The piston is moveable between retracted and extended positions. The piston generates a force. A pivoting guide operatively extends between the chain of the drive system and the piston. The pivoting guide applies a first portion of the force against the chain. A lever is operatively connected to the piston between the piston and the pivoting guide. The lever translates the force from the piston to the pivoting guide. The tensioner assembly also includes a cam member that is pivotally coupled to the housing and is slidingly engaged with the pivoting guide. The cam member abuts the lever such that movement of the lever by the piston pivots the cam member in a manner that applies a second portion of the force against the pivoting guide in a varying magnitude.
Abstract:
A synchronous drive apparatus includes first and a second rotors. The rotors have multiple teeth for engaging engaging sections of an elongate drive structure. A rotary load assembly couples to the second rotor. The elongate drive structure engages about the rotors. The first rotor drives and the second rotor is driven by the elongate drive structure. One of the rotors has a non-circular profile having at least two protruding portions alternating with receding portions. The rotary load assembly presents a periodic fluctuating load torque when driven in rotation. The angular positions of the protruding and receding portions of the non-circular profile relative to the angular position of the second rotor, and the magnitude of the eccentricity of the non-circular profile, are such that the non-circular profile applies to the second rotor an opposing fluctuating corrective torque which reduces or cancels the fluctuating load torque of the rotary load assembly.
Abstract:
A synchronous drive apparatus that includes a continuous loop elongate drive structure and first and second driven rotors that are configured to cooperate with the continuous loop elongate drive structure to generate first and second opposing fluctuating corrective torques, respectively, that are configured to at least partly counteract first and second periodic fluctuating load torques, respectively.
Abstract:
A synchronous drive apparatus and method, wherein the apparatus comprises a plurality of rotors comprising at least a first and a second rotor. The first rotor has a plurality of teeth for engaging the engaging sections of an elongate drive structure, and the second rotor has a plurality of teeth for engaging the engaging section of the elongate drive structure. A rotary load assembly is coupled to the second rotor. The elongate drive structure engages about the first and second rotors. The first rotor is arranged to drive the elongate drive structure and the second rotor is arranged to be driven by the elongate drive structure. One of the rotors has a non-circular profile having at least two protruding portions alternating with receding portions. The rotary load assembly is such as to present a periodic fluctuating load torque when driven in rotation, in which the angular positions of the protruding and receding portions of the non-circular profile relative to the angular position of the second rotor, and the magnitude of the eccentricity of the non-circular profile, are such that the non-circular profile applies to the second rotor an opposing fluctuating corrective torque which reduces or substantially cancels the fluctuating load torque of the rotary load assembly.
Abstract:
A non-circular sprocket component comprises a rotor (11) having a plurality of teeth (16) arranged around the perimeter of the rotor, each tooth having a crown (9), and each pair of adjacent teeth having a valley (8) therebetween. The crowns of the teeth lie on a curved envelope forming the perimeter of the motor. The perimeter has a non-circular profile having at least two protruding portions (22, 23) alternating with receding portions (24, 25). The distance between the midpoints (V) of the crowns (9) of each pair of adjacent teeth is substantially the same. The profile of the valley (8) between each pair of adjacent teeth is substantially the same. The distance between the midpoint (V), of each crown (9) and the axis (A) of the rotor varies around the perimeter to produce the said non-circular profile.
Abstract:
A synchronous drive apparatus and method, wherein the apparatus comprises a plurality of rotors comprising at least a first and a second rotor. The first rotor has a plurality of teeth for engaging the engaging sections of an elongate drive structure, and the second rotor has a plurality of teeth for engaging the engaging section of the elongate drive structure. A rotary load assembly is coupled to the second rotor. The elongate drive structure engages about the first and second rotors. The first rotor is arranged to drive the elongate drive structure and the second rotor is arranged to be driven by the elongate drive structure. One of the rotors has a non-circular profile having at least two protruding portions alternating with receding portions. The rotary load assembly is such as to present a periodic fluctuating load torque when driven in rotation, in which the angular positions of the protruding and receding portions of the non-circular profile relative to the angular position of the second rotor, and the magnitude of the eccentricity of the non-circular profile, are such that the non-circular profile applies to the second rotor an opposing fluctuating corrective torque which reduces or substantially cancels the fluctuating load torque of the rotary load assembly.