-
11.
公开(公告)号:US11554485B2
公开(公告)日:2023-01-17
申请号:US16522267
申请日:2019-07-25
Applicant: X Development LLC
Inventor: Seyed Mohammad Khansari Zadeh
IPC: B25J9/16 , B25J13/08 , G05B19/423
Abstract: Generating a robot control policy that regulates both motion control and interaction with an environment and/or includes a learned potential function and/or dissipative field. Some implementations relate to resampling temporally distributed data points to generate spatially distributed data points, and generating the control policy using the spatially distributed data points. Some implementations additionally or alternatively relate to automatically determining a potential gradient for data points, and generating the control policy using the automatically determined potential gradient. Some implementations additionally or alternatively relate to determining and assigning a prior weight to each of the data points of multiple groups, and generating the control policy using the weights. Some implementations additionally or alternatively relate to defining and using non-uniform smoothness parameters at each data point, defining and using d parameters for stiffness and/or damping at each data point, and/or obviating the need to utilize virtual data points in generating the control policy.
-
12.
公开(公告)号:US20220297303A1
公开(公告)日:2022-09-22
申请号:US17203296
申请日:2021-03-16
Applicant: X Development LLC
Inventor: Seyed Mohammad Khansari Zadeh , Eric Jang , Daniel Lam , Daniel Kappler , Matthew Bennice , Brent Austin , Yunfei Bai , Sergey Levine , Alexander Irpan , Nicolas Sievers , Chelsea Finn
Abstract: Implementations described herein relate to training and refining robotic control policies using imitation learning techniques. A robotic control policy can be initially trained based on human demonstrations of various robotic tasks. Further, the robotic control policy can be refined based on human interventions while a robot is performing a robotic task. In some implementations, the robotic control policy may determine whether the robot will fail in performance of the robotic task, and prompt a human to intervene in performance of the robotic task. In additional or alternative implementations, a representation of the sequence of actions can be visually rendered for presentation to the human can proactively intervene in performance of the robotic task.
-
公开(公告)号:US11007642B2
公开(公告)日:2021-05-18
申请号:US16167596
申请日:2018-10-23
Applicant: X Development LLC
Inventor: Seyed Mohammad Khansari Zadeh , Mrinal Kalakrishnan , Paul Wohlhart
Abstract: Training and/or use of a machine learning model for placement of an object secured by an end effector of a robot. A trained machine learning model can be used to process: (1) a current image, captured by a vision component of a robot, that captures an end effector securing an object; (2) a candidate end effector action that defines a candidate motion of the end effector; and (3) a target placement input that indicates a target placement location for the object. Based on the processing, a prediction can be generated that indicates likelihood of successful placement of the object in the target placement location with application of the motion defined by the candidate end effector action. At many iterations, the candidate end effector action with the highest probability is selected and control commands provided to cause the end effector to move in conformance with the corresponding end effector action. When at least one release criteria is satisfied, control commands can be provided to cause the end effector to release the object, thereby leading to the object being placed in the target placement location.
-
-