摘要:
A dual chamber pacemaker system having a dynamic tracking limit, as well as a dynamic pacing limit (flywheel rate), the two dynamic limits being normally coupled to a measure of the sensed atrial rate as long as such rate is physiological. When the atrial signal is lost, i.e., cannot be tracked, the pacemaker responds with asynchronous pacing and normally decrements both dynamic limits, taking the flywheel rate down toward a lower pacing limit. The pacemaker of this invention provides a freeze function whereby the dynamic pacing limit and dynamic tracking limit are maintained constant for a plurality of cycles following asynchronous operation, to improve the possibility of regaining tracking if an underlying physiological atrial signal reappears at about the rate prior to being lost. The freeze function may be timed out for a predetermined number of cycles, e.g., eight, or may have a reduced duration if a series of consecutive synchronous cycles is detected. In a second embodiment, the dynamic tracking limit is decreased without any freeze when the pacer goes into asynchronous operation, but the dynamic tracking limit which existed just before the switch to asynchronous operation is remembered; if the atrial rate reappears below this remembered dynamic tracking limit, the dynamic tracking limit is ramped upward to achieve quick tracking of the reappeared sinus rate. A further embodiment may incorporate the features of the first two embodiments, i.e., a short freeze followed by a period of remembering the value of DTL when async mode was initiated.
摘要:
A dual chamber cardiac pacemaker system has logic for detecting high rate as well as normal atrial spontaneous signals, and for tracking atrial signals within a predetermined tracking rate range by delivering ventricular pace pulses at an AV interval following each atrial sense within said tracking range. The pacemaker also has detection circuitry for detecting a sequence of pacemaker cycles characterized by first degree AV block, wherein atrial sense signals occur too early to permit tracking, and ventricular spontaneous signals occur following an extended AV-delay such as is characterized by first degree block. The pacemaker restores tracking following detection of such a sequence by delivering ventricular pace pulses at an extended AV interval to override the spontaneous ventricle signals and gradually decreasing the AV-delay back to a normal value, thereby restoring tracking without pacing the ventricle at an excessive rate.
摘要:
A dual chamber pacemaker system is provided having means for determining when sensed atrial signals have a physiological rate, and tracking only such sensed atrial signals as are found to have physiological rates. The pacemaker provides logic means for continuously determining a physiological rate as a function of sensed atrial rate, whereby physiological rate substantially tracks the rate of sensed physiological atrial signals. The pacemaker also determines dynamic decision rates which are coupled to follow the physiological rate. The decision rates comprise a dynamic pacing limit, which sets the pacing escape interval; a dynamic tracking limit, which sets the upper limit of the physiological range of rates which are tracked; and the dynamic Wenckebach limit, which defines the upper rate for a dynamic Wenckebach range. The pacemaker enables time out of an AV delay for synchronizing delivery of ventricular pacing pulses with respect to atrial heartbeats which occur within the range between the dynamic pacing limit and the dynamic tracking limit, i.e., the physiological range. Synchronized ventricular pacing pulses are delivered when both the sensed atrial signal and the scheduled synchronized ventricular signal have rates within the determined physiological range. The pacemaker substantially continuously determines atrial rate, sensing all atrial signals except for a short PVAB which limits atrial sensing only to the extent required to block far field R-waves.