摘要:
Detection accuracy is improved without reducing a driving frequency and an S/N ratio.Driving electrodes (DL(j−2) and DL(j−1)) of a driving electrode group (GDL(i)) overlap a driving electrode group GDL(i−1), and driving electrodes (DL(j+1) and DL(j+2)) thereof overlap a driving electrode group GDL(i+1). A first changeover terminal of a changeover switch (SW(i)) is connected to a wire to which a burst clock signal (BCK) is given, and a ground potential is given to a second changeover terminal thereof. A common terminal of the changeover switch (SW(i)) is connected to a driving electrode (DL(j)) located at a center of the driving electrode group (GDL(i)), is connected to the driving electrodes (DL(j−1) to DL(j−3)), respectively, via one to three resistive elements (Rd), and is connected to the driving electrodes (DL(j+1) to DL(j+3)), respectively, via one to three resistive elements (Rd).
摘要:
Detection accuracy is improved without reducing a driving frequency and an S/N ratio.Driving electrodes (DL(j−2) and DL(j−1)) of a driving electrode group (GDL(i)) overlap a driving electrode group GDL(i−1), and driving electrodes (DL(j+1) and DL(j+2)) thereof overlap a driving electrode group GDL(i+1). A first changeover terminal of a changeover switch (SW(i)) is connected to a wire to which a burst clock signal (BCK) is given, and a ground potential is given to a second changeover terminal thereof. A common terminal of the changeover switch (SW(i)) is connected to a driving electrode (DL(j)) located at a center of the driving electrode group (GDL(i)), is connected to the driving electrodes (DL(j−1) to DL(j−3)), respectively, via one to three resistive elements (Rd), and is connected to the driving electrodes (DL(j+1) to DL(j+3)), respectively, via one to three resistive elements (Rd).
摘要:
A touch panel includes a plurality of drive lines and a plurality of sense lines, a sampling switch connected to the sense lines, and an integral circuit connected to the sense lines through the sampling switch. The sampling switch is arranged to keep an on- or off-state for a certain time (P) from a moment at which a voltage of a source bus line is changed.
摘要:
A touch panel includes a plurality of drive lines and a plurality of sense lines, a sampling switch connected to the sense lines, and an integral circuit connected to the sense lines through the sampling switch. The sampling switch is arranged to keep an on- or off-state for a certain time from a moment at which a voltage of a source bus line is changed.
摘要:
A plurality of first sensor pixel circuits each sensing light during a sensing period when a backlight is turned on and retaining the amount of sensed light otherwise in accordance with a clock signal and a plurality of second sensor pixel circuits each sensing light during a sensing period when the backlight is turned off and retaining the amount of sensed light otherwise in accordance with a clock signal are arranged in a pixel region. The sensor pixel circuits of two types are connected to different output lines, so that a difference between two output signals is obtained at the outside of the sensor pixel circuit. The sensor pixel circuits described above are used for detecting a difference between an amount of light to be incident when the backlight is turned on and an amount of light to be incident when the backlight is turned off.
摘要:
Provided is a display device that is capable of ensuring a wide dynamic range of an optical sensor even in the case where an offset due to ambient temperature changes is compensated with use of an output of a reference element. The display device has optical sensors in a pixel region of an active matrix substrate (100), wherein the optical sensors include a photodetecting sensor which outputs a sensor signal according to an amount of received light, and a reference sensor which has a configuration obtained by adding a light shielding film to the photodetecting sensor and outputs a sensor signal according to an offset component. The display device includes: an offset comparison circuit (61) that determines a degree of divergence between the sensor signal output from the reference sensor and a standard offset value; and a driving signal generation circuit (62) that adjusts a potential of a driving signal for the optical sensors according to the degree of divergence determined by the offset comparison circuit (61).
摘要:
A plurality of sensor pixel circuits each including two photodiodes, one accumulation node accumulating charge corresponding to an amount of light, and a read transistor having a control terminal connected to the accumulation node are arranged in a pixel region. In accordance with a clock signal, when a backlight is turned on, a transistor turns on, a current flows through the photodiode, and a potential at the accumulation node drops. When the backlight is turned off, a transistor turns on, a current flows through the photodiode, and the potential at the accumulation node rises. Sensitivity characteristics of the two photodiodes may be changed using the clock signal. The sensor pixel circuit described above is used for detecting a difference between an amount of light to be incident when the backlight is turned on and an amount of light to be incident when the backlight is turned off.
摘要:
A plurality of sensor pixel circuits are disclosed for detecting a difference between an amount of light when a backlight is turned on and an amount of light when the backlight is turned off are arranged in a pixel region. The backlight is turned on and off a plurality of times, respectively, in a one-frame period. Each of reset for the sensor pixel circuits and read from the sensor pixel circuits is performed in parallel, each in a line sequential manner over almost the one-frame period. A plurality of sensor pixel circuits of two types for separately detecting an amount of light when the backlight is turned on and an amount of light when the backlight is turned off may be arranged in the pixel region, and a difference circuit may be used for obtaining a difference between the two types of amounts of light.
摘要:
Provided is a display device having a photodetecting element in a pixel, and having an input function that is not dependent on light environments. This is a display device having an optical sensor in a pixel region. The optical sensor includes a first sensor pixel circuit that outputs a sensor signal corresponding to electric charges accumulated during an accumulation period in an ON time of a light source for the sensor; and a second sensor pixel circuit that that outputs a sensor signal corresponding to electric charges accumulated during an accumulation period in an OFF time of the light source. A sensor driving circuit for driving the first sensor pixie circuit and the second sensor pixel circuit supplies reset signals (RST1, RST2) to the first sensor pixel circuit and the second sensor pixel circuit, respectively, during vertical flyback periods in pixel display in the pixel region.
摘要:
Provided is a display device that has a photodetection element in a pixel, and has an input function that is not dependent on the light environment. The display device includes a photosensor in a pixel region. The photosensor includes a first sensor pixel circuit that outputs a sensor signal that corresponds to charge accumulated in an accumulation period when a light source for the sensor is lit, and a second sensor pixel circuit that outputs a sensor signal that corresponds to charge accumulated in an accumulation period when the light source is extinguished. The photosensor has, as operation modes in one frame period, a sensor drive mode for obtaining sensor signals from the first and second sensor pixel circuits, a first correction data acquisition mode for acquiring first correction data for correcting the sensor signal from the first sensor pixel circuit, and a second correction data acquisition mode for acquiring second correction data for correcting the sensor signal from the second sensor pixel circuit.