Abstract:
User interfaces receive a first plurality of user queries and result sets that are in a category, exhibit a constraint, and exhibit user behavior. Also received are a second plurality of user queries and result sets that that are in the category, exhibit the constraint, and exhibit user behavior. The second user queries and results are received either from a plurality of user interfaces coupled to a second system, or from the second system itself. Responsive to detecting that the first plurality of user queries and result sets and the second plurality of user queries and result sets satisfy respective thresholds, a signal indicates that at least one of the first plurality of user queries and at least one of the second plurality of user queries are translations of each other.
Abstract:
User interfaces receive a first plurality of user queries and result sets that are in a category, exhibit a constraint, and exhibit user behavior. Also received are a second plurality of user queries and result sets that that are in the category, exhibit the constraint, and exhibit user behavior. The second user queries and results are received either from a plurality of user interfaces coupled to a second system, or from the second system itself. Responsive to detecting that the first plurality of user queries and result sets and the second plurality of user queries and result sets satisfy respective thresholds, a signal indicates that at least one of the first plurality of user queries and at least one of the second plurality of user queries are translations of each other.
Abstract:
In a flow of computer actions, a computer system (110) receives a request involving a machine translation. In performing the translation (160, 238), or in using the translation in subsequent computer operations (242, 1110), the computer system takes into account known statistical relationships (310), obtained from previously accumulated click-through data (180), between a machine translation performed in a flow, the flow's portions preceding the translation, and success indicators pertaining to the flow's portion following the translation. The statistical relationships are derived by data mining of the click-through data. Further, normal actions can be suspended to use a random option to accumulate the click-through data and/or perform statistical AB testing. Other features are also provided.
Abstract:
In various example embodiments, a system and method for a Listing Engine that translates a first listing from a first language to a second language. The first listing includes an image(s) of a first item. The Listing Engine provides as input to an encoded neural network model a portion(s) of a translated first listing and a portions(s) of a second listing in the second language. The second listing includes an image(s) of a second item. The Listing Engine receives from the encoded neural network model a first feature vector for the translated first listing and a second feature vector for the second listing. The first and the second feature vectors both include at least one type of image signature feature and at least one type of listing text-based feature. Based on a similarity score of the first and second feature vectors at least meeting a similarity score threshold, the Listing Engine generates a pairing of the first listing in the first language with the second listing in the second language for inclusion in training data of a machine translation system.
Abstract:
According to various embodiments, the Query Context Translation Engine identifies a topic of a search query history received during a current user session. The search query history in a first language. The Query Context Translation Engine identifies, in a translation table, target text that corresponds with a query in the search query history, the target text comprising at least one word. The Query Context Translation Engine obtains at least one search result based on a translation of the target text in a second language.
Abstract:
Publication system, such as ecommerce system, machine translation translates a query in a first language to a second language to query an ecommerce database maintained in the second language and obtain a result set responsive to the query. Human feedback relating to the result set is detected. If the feedback is positive the system increases the probability that the translation is correct. If the feedback is negative the system decreases the probability that the translation is correct. For positive feedback, the system detects whether a clue is recognized in the query. If a clue is recognized the system increases the value of the clue for making the translation. The system detects the identity of the product in the query, accesses the product vendor website that is maintained in the query language, and detects information that is in the query language for use in the translation process.
Abstract:
User interfaces receive a first plurality of user queries and result sets that are in a category, exhibit a constraint, and exhibit user behavior. Also received are a second plurality of user queries and result sets that that are in the category, exhibit the constraint, and exhibit user behavior. The second user queries and results are received either from a plurality of user interfaces coupled to a second system, or from the second system itself. Responsive to detecting that the first plurality of user queries and result sets and the second plurality of user queries and result sets satisfy respective thresholds, a signal indicates that at least one of the first plurality of user queries and at least one of the second plurality of user queries are translations of each other.
Abstract:
A method of propagating annotations of content items to a search query is disclosed. A strength of a correspondence between a search query and a title of a listing of an item on a network-based publication system is determined. The strength of the correspondence is based on an analysis of a set of actions by a set of users who submitted the search query. A set of annotations corresponding to the title is generated. The set of annotations is propagated to an additional search query such that the set of annotations and the strength of the correspondence are used by a search engine to enhance search results corresponding to the additional search query.
Abstract:
In various example embodiments, a system and method for a Listing Engine that translates a first listing from a first language to a second language. The first listing includes an image(s) of a first item. The Listing Engine provides as input to an encoded neural network model a portion(s) of a translated first listing and a portions(s) of a second listing in the second language. The second listing includes an image(s) of a second item. The Listing Engine receives from the encoded neural network model a first feature vector for the translated first listing and a second feature vector for the second listing. The first and the second feature vectors both include at least one type of image signature feature and at least one type of listing text-based feature. Based on a similarity score of the first and second feature vectors at least meeting a similarity score threshold, the Listing Engine generates a pairing of the first listing in the first language with the second listing in the second language for inclusion in training data of a machine translation system.
Abstract:
In various example embodiments, a system and method for a Listing Engine that translates a first listing from a first language to a second language. The first listing includes an image(s) of a first item. The Listing Engine provides as input to an encoded neural network model a portion(s) of a translated first listing and a portions(s) of a second listing in the second language. The second listing includes an image(s) of a second item. The Listing Engine receives from the encoded neural network model a first feature vector for the translated first listing and a second feature vector for the second listing. The first and the second feature vectors both include at least one type of image signature feature and at least one type of listing text-based feature. Based on a similarity score of the first and second feature vectors at least meeting a similarity score threshold, the Listing Engine generates a pairing of the first listing in the first language with the second listing in the second language for inclusion in training data of a machine translation system.