摘要:
The present disclosure describes a fast intersection between secondary rays and geometric objects for a global illumination ray tracing. The Acceleration Structures of prior art are replaced by a new and novel device—a Dynamically Aligned Structure (DAS), a means for carrying out the intersection between secondary rays and scene geometry in large groups of rays, gaining high speed and lowering computational complexity. Its reduced power consumption is suitable to consumer level computing devices.
摘要:
Aspects comprise a ray shooting method based on the data structure of a uniform grid of cells, and on local stencils in cells. The high traversal and construction costs of accelerating structures are cut down. The object's visibility from the viewpoint and from light sources, as well as the primary workload and its distribution among cells, are gained in the preprocessing stage and cached in stencils for runtime use. In runtime, the use of stencils allows a complete locality at each cell, for load balanced parallel processing.
摘要:
Aspects comprise shadowing method as part of ray tracing. It is based on uniform grid of cells, and on local stencils in cells. The acceleration structures are abandoned along with high traversal and construction costs of these structures. The amount of intersection tests is cut down. The stencils are generated in the preprocessing stage and utilized in runtime. The relevant part of scene data, critical for shadowing of all visible intersection points in a cell, is registered in the local stencil map, as a volumetric data. The runtime use of stencils allows a complete locality at each cell, enhanced utilization of processing resources and load balancing of parallel processing.
摘要:
Novel method and system for distributed database ray-tracing is presented, based on modular mapping of scene-data among processors. Its inherent properties include scattering data among processors for improved load balancing, and matching between geographical proximity in the scene with communication proximity between processors. High utilization is enabled by unique mechanism of cache sharing. The resulting improved performance enables deep level of ray tracing for real time applications.
摘要:
A path tracing system in which the traversal task is distributed between one global acceleration structure, which is central in the system, and multiple local acceleration structures, distributed among cells, of high locality and of autonomous processing. Accordingly, the centrality of the critical resource of accelerating structure is reduced, lessening bottlenecks, while improving parallelism.
摘要:
Accelerating structure for hybrid ray tracing is characterized by high locality, wherein scene changes are updated locally in one of its hierarchies, without effecting other locations in the structure. Reconstructions of accelerating structures of prior art are replaced by low-cost updates. The efficiency of traversals is improved by a double step traversal.
摘要:
The present disclosure describes a system for fast generation of ray traced reflections of virtually augmented objects into a real-world image. The system utilizes a standard raster graphics pipeline.
摘要:
The present invention teaches a real-time hybrid ray tracing method for non-planar specular reflections. The high complexity of a non-planar surface is reduced to low complexity of multiple small planar surfaces. Advantage is taken of the planar nature of triangles that comprise building blocks of a non-planar surface. All secondary rays bouncing from a given surface triangle toward object triangles keep a close direction to each other. A collective control of secondary rays is enabled by this closeness and by decoupling secondary rays from primary rays. The result is high coherence of secondary rays.
摘要:
The present disclosure describes a new method for rendering ray traced reflections, applied to augmented reality and virtual reality. The intersections between secondary rays and scene geometry are done in large groups of rays, gaining high speed and lowering the computational complexity. Its reduced power consumption is suitable to consumer class of computing devices.
摘要:
The present disclosure describes a system of fast intersection between secondary rays and geometric objects for a global illumination ray tracing. A hardware graphics pipeline of GPU is used as a means for carrying out the intersection between secondary rays and scene geometry in large groups of rays, gaining high speed and lowering computational complexity. The resulting power consumption is reduced.