Abstract:
Context-aware loudness control of audio content may include choosing from a plurality of loudness level models based on an audio reproduction device, measuring loudness level of the audio content based on the chosen loudness model, processing the real-time loudness measurement of the input audio signal to output real-time loudness level adjustment, processing a momentary loudness measurement of the input audio signal to output a momentary loudness level adjustment, processing a short-term loudness measurement of the input audio signal to output a short-term loudness level adjustment, adjusting the input audio signal based on the real-time, momentary, and short-term loudness level adjustments to output a post-processing input signal, measuring long-term loudness of the post-processing input signal to output a long-term loudness measurement, processing the long-term loudness measurement to output a post-processing level adjustment, and processing the real-time, momentary, short-term, and post-processing level adjustments to output an overall loudness level adjustment.
Abstract:
A method to watermark an audio signal may include receiving watermark data payload information, converting the watermark data payload information into a watermark audio signal including one or more watermark messages corresponding to the watermark data payload information, and inserting the one or more watermark messages into multiple spectral channels of the audio signal, wherein each of the multiple spectral channels occupies a different frequency range, wherein bandwidth of a first spectral channel located in a first frequency region is smaller than bandwidth of a second spectral channel located in a second frequency region, and wherein bandwidth of a spectral channel, from the multiple spectral channels, is equal to a number divided by the time duration of a respective symbol, from the multiple symbols, in the spectral channel, wherein the number is in the range of 0.7 to 2.5.
Abstract:
A method for a machine or group of machines to watermark an audio signal includes receiving an audio signal and a watermark signal including multiple symbols, and inserting at least some of the multiple symbols in multiple spectral channels of the audio signal, each spectral channel corresponding to a different frequency range. Optimization of the design incorporates minimizing the human auditory system perceiving the watermark channels by taking into account perceptual time-frequency masking, pattern detection of watermarking messages, the statistics of worst case program content such as speech, and speech-like programs.
Abstract:
Extracting a common signal from multiple audio signals may include summing a first signal and a second signal to obtain a first+second signal; subtracting the second signal from the first signal to obtain a first−second signal; transforming the first+second signal and the first−second signal to frequency domain representations; calculating absolute value of the frequency domain representations of the first+second signal and the first−second signal; subtracting the absolute value of the frequency domain representation of the first−second signal from the absolute value of the frequency domain representation of the first+second signal to obtain a difference signal; multiplying the difference signal by the frequency domain representation of the first+second signal to obtain a product signal; dividing the product signal by the absolute value of the frequency domain representation of the first+second signal to obtain a frequency domain representation of the common signal; and transforming the frequency domain representation to the common signal.
Abstract:
A method for a machine or group of machines to watermark an audio signal includes receiving an audio signal and a watermark signal including multiple symbols, and inserting at least some of the multiple symbols in multiple spectral channels of the audio signal, each spectral channel corresponding to a different frequency range. Optimization of the design incorporates minimizing the human auditory system perceiving the watermark channels by taking into account perceptual time-frequency masking, pattern detection of watermarking messages, the statistics of worst case program content such as speech, and speech-like programs.
Abstract:
Optimizing parameters includes, during a time interval, rotating from setting a first parameter to a first value for a first time period, to setting the first parameter to a second value for a second time period such that the time interval includes multiple first time periods in which the first parameter is set to the first value sequenced with multiple second time periods in which the first parameter is set to the second value; obtaining, for the time interval, a first set of ratings corresponding to the first time periods and a second set of ratings corresponding to the second time periods; averaging, for the time interval, the first set of ratings to a first average rating and the second set of ratings to a second average rating; and correlating the first average rating to the first value and the second average rating to the second value.