Abstract:
An indirectly heated cathode for gas discharge tube C1 comprises a heater 1, a double coil 2, a plate member 3, and a metal oxide 10. An electrical insulating layer 4 is formed on the surface of heater 1. Heater 1 is disposed at the inner side of double coil 2. Plate member 3 is disposed along the length direction of double coil 2 at the inner side of double coil 2, which is to be the discharge surface side, and is electrically connected to double coil 2. Also, plate member 3 is grounded by being connected to the ground terminal of heater 1. Metal oxide 10 is held by double coil 2 and disposed to be in contact with plate member 3. Metal oxide 10 is in contact with double coil 2.
Abstract:
A plasma display device comprises two plates defining a gas filled space therebetween, striped anodes and cathodes, wherein the cathodes are composed of a first cathode element and a second cathode element, and a sealing layer. The second cathode is formed on said first cathode element. The sealing layer is formed between the cathodes to prevent the first element from being exposed to the gas filled space. The device forms a high-quality picture by minimizing the difference in luminance between pixels.
Abstract:
A diverging magnetic field is established between the cathode and control electrode of a hollow cathode plasma switch to expand the plasma at a passageway through the control electrode, thus significantly increasing the switch's current handling capability. Preferred ranges of magnetic field strength, gas pressure, spacing between the hollow cathode and control electrode, and the mesh aperture size for the control grid are described.
Abstract:
The present invention discloses a method of producing a discharge display device which enables a LaB.sub.6 cathode to be formed by a thick-film printing method. The method of the present invention comprises the steps of applying a paste prepared by mixing LaB.sub.6 powder with alkali glass powder in a proportion of 20-40 wt. % with respect to the LaB.sub.6 powder to a base electrode, burning the paste, and activating the paste by gas discharge with large current after an exhaustion step to form a LaB.sub.6 cathode on the base electrode.
Abstract:
An indirectly heated cathode C1 comprises a heater 1, a double coil 2, a mesh member 3, and a metal oxide 10. An electrical insulating layer 4 is formed on the surface of heater 1. Heater 1 is inserted into and positioned at the inner side of double coil 2. Mesh member 3 is disposed along the length direction of double coil 2 at the outer side of double coil 2. Double coil 2 is grounded by being connected to the ground terminal of heater 1 via a lead rod 7. Metal oxide 10 is held by double coil 2 and disposed to be in contact with mesh member 3. Metal oxide 10 and mesh member 3 are exposed to the outer side of indirectly heated electrode C1 so that the surface of metal oxide 10 and the surface of mesh member 3 make up a discharge surface and mesh member 3 is in contact with the surface part of metal oxide 10.
Abstract:
An indirectly heated cathode C1 comprises a heater 1, a double coil 2, a mesh member 3, and a metal oxide 10. An electrical insulating layer 4 is formed on the surface of heater 1. Heater 1 is inserted into and positioned at the inner side of double coil 2. Mesh member 3 is disposed along the length direction of double coil 2 at the outer side of double coil 2. Double coil 2 is grounded by being connected to the ground terminal of heater 1 via a lead rod 7. Metal oxide 10 is held by double coil 2 and disposed to be in contact with mesh member 3. Metal oxide 10 and mesh member 3 are exposed to the outer side of indirectly heated electrode C1 so that the surface of metal oxide 10 and the surface of mesh member 3 make up a discharge surface and mesh member 3 is in contact with the surface part of metal oxide 10.