Abstract:
A method for controlling the milking by a milking machine includes, during an initial phase of the milking, increasing a milking vacuum and/or a maximum pulsation vacuum for the milking gradually from a first selected vacuum level (1L) towards a second selected vacuum level (2L) to thereby improve teat stimulation and decreasing the risk of a second milk letdown. When a second milk letdown (2ML) is detected, the maximum pulsation vacuum is preferably immediately lowered to a third selected vacuum level (3L), and is kept at that third selected vacuum level until a certain milk flow has been established, whereupon the pulsation vacuum level is then again increased gradually until the second selected vacuum level is reached.
Abstract:
A method for controlling the milking by a milking machine includes, during an initial phase of the milking, increasing a milking vacuum and/or a maximum pulsation vacuum for the milking gradually from a first selected vacuum level (1L) towards a second selected vacuum level (2L) to thereby improve teat stimulation and decreasing the risk of a second milk letdown. When a second milk letdown (2ML) is detected, the maximum pulsation vacuum is preferably immediately lowered to a third selected vacuum level (3L), and is kept at that third selected vacuum level until a certain milk flow has been established, whereupon the pulsation vacuum level is then again increased gradually until the second selected vacuum level is reached.
Abstract:
A milking implement comprising a frame with, disposed thereon, at least one teat cup holder with a teat cup movable relative thereto, and a replacing element connected with the teat cup, wherein the frame further includes an intermediate arm connected with the frame and with the teat cup holder and having a first joint and a second joint about which the teat cup holder and the intermediate arm, respectively, are tiltable with the aid of the replacing element, and a spring coupled with the teat cup holder and the frame and, if desired, with the intermediate arm.
Abstract:
A method for animal management is provided in a milking system including a a milking box, a milking apparatus for milking animals, an enclosed waiting area from which the animals are capable of entering the milking box, and a gate arrangement, in which each of the animals is allowed to enter and pass the waiting area if the animal, after having been identified, fulfills a criterion. The method includes measuring a time an animal waits in the waiting area before being milked; determining a ranking for the animal based on the time, the ranking being a measure of a hierarchic order of the animal among the animals milked in the milking system; and performing an action with regard to the milking system depending on the determined ranking.
Abstract:
The invention relates to apparatus for milking animals such as cows, components of the apparatus and methods of milking animals employing the apparatus. The apparatus comprises at least two resilient membranes having a space therebetween into which the teat of the animal may be inserted. The membranes are held by a support structure under tension in a direction transverse to the direction of insertion of the teat, to protect the teat from excessive force when the membranes fall onto the teat.
Abstract:
A fluid application system for automatically applying a fluid to the teats of an animal subsequent to the milking of the animal comprises a fluid delivery arrangement comprising a plurality of applicators, wherein each of the applicators is arranged in connection with a respective teat cup and is provided for applying the fluid to a teat of the animal, to which the respective teat cup is attached during the milking of the animal, in connection with a detachment of the teat cup from the teat. A control arrangement is provided for (i) determining, for a detachment of a teat cup from a teat, whether that detachment is a normal detachment or an abnormal detachment, and (ii) controlling, for the detachment of the teat cup from the teat, the applicator arranged in connection with that teat cup to apply the fluid provided that the detachment is a normal detachment and to not apply the fluid provided that the detachment is an abnormal detachment.
Abstract:
A milking system includes a vacuum pump (11); milking equipment (15); a conduit (14) connecting the milking equipment to the vacuum pump; and a first vacuum regulator (25) provided to maintain a preset vacuum level in the milking equipment. A second vacuum regulator (27, 29, 30a) is arranged between the first vacuum regulator and the vacuum pump and is provided for regulating the preset vacuum to a desired level. Preferably, the second vacuum regulator includes a pressure sensor (30a) provided for measuring a pressure level in the milking system; adjustable air admitting elements (31), e.g. a solenoid valve, provided for admitting air to enter the conduit; and a control device (29) provided for controlling the second vacuum regulator depending on the measured pressure level.
Abstract:
A method of milking an animal involves admitting the animal into a milking box and expelling the animal from the milking box, the milking box comprising a connecting device, such as a robot arm, for automatically connecting a teat cup to a teat of the animal. The step of expelling the animal from the milking box is carried out using the robot arm. An installation for milking an animal is also described, the installation being provided with a milking box for the animal; a robot arm for automatically connecting a teat cup to a teat of the animal; and a device for expelling the animal from the milking box. The device for expelling the animal from the milking box comprises part of the robot arm.
Abstract:
A method for calibrating milk meters in a milking system includes a milking station having at least one milk meter that measures a value of a milking performance of a milking animal. The method includes the steps: determining a reference value which reflects the amount of milk received from a number of milking animals during a selected time period in a reference unit, retrieving all measured values during the selected time period for each milk meter that by itself contribute to the amount of milk received by the reference unit, comparing the reference value with the sum of all retrieved measured values and calculating a correction function for one of the milk meters, and using the calculated correction function to adjust the measured value from the milk meter.
Abstract:
A milking parlor (10) comprises a row of stalls (14) accessible to milk producing animals (12) from a front end (14a) thereof, and adapted for milking the animals; and an identification station (20) arranged in the front end for identifying the animals when entering the parlor. A method of verifying the identities of the animals in the row comprises: (i) identifying the animals in the stall located at the far end (14b) of the row, in the stall located at the front end (14a) of the row, and in a stall located there in between by first, second and third identification members (24, 26, 28); (ii) comparing the identifications of the first, second, and third identification members (24, 26, 28) with the first, last and n'th identifications from the identification station (20), where the stall located between the far and front ends is the n'th stall as counted from the far end (14b); and (iii) depending on the comparison verifying the identities of at least some of the animals (12) in the row (14).