Abstract:
A system for uniformly distributing propellant gas in a Hall-effect thruster (10) (HET) includes an anode (42, 42′) and a porous material gas distributor (60, 89) (PMGD). The porous material (120) may be porous metal or porous ceramic. Propellant gas is directed from a supply to the PMGD for distribution into a gas discharge region (16) of the HET (10). The gas flows through the porous material (120) of the PMGD and out of the PMGD's exit surface (71) into the annular gas discharge region (16). The PMGD has an average pore size, pore density and thickness that are optimized to control the flow of the gas at the desired flow rate and distribution uniformity at a relatively short distance downstream from the PMGD. This feature allows HET to be short, significantly decreasing susceptibility to vibration problems encountered during vehicle launch. The PMGD can include a shield (79, 80) for preventing contaminants from traveling upstream from the gas discharge region from adhering to the porous metal. The shield may be integrated into the PMGD or be a separate shield. In addition, the shield may be perforated so as to allow gas to pass through the shield to further decrease the distance needed to achieve uniform gas distribution. Alternatively, the exit surface (71) of the porous metal may be oriented to face perpendicularly from the gas discharge path out of the HET, which significantly reduces the probability of contaminants adhering to the exit surface.
Abstract:
A housing and the structure within its interior is protected by spraying a protective coating overlying and contacting at least a portion of the housing. The protective coating is an ionizing radiation protective material such as a neutron-shielding material, a gamma-ray/X-ray shielding material, and a capture gamma-ray suppression material. The protective coating is at least about 0.020 inch thick.
Abstract:
Two closed-loop coils are respectively set at the top or the bottom of a cathode ray tube. These two closed-loop coils serves in a pair as a cancel coil. Each closed-loop coil is positioned so as to make an interlinkage with the magnetic field leakage that escapes from the deflection yoke, a part of the closed-loop coil running almost in parallel to the top or bottom edge of an effective display region of a front panel.