Abstract:
An organic light emitting diode (OLED) display includes a substrate including a plurality of pixels defined thereon, a thin film transistor (TFT) positioned at each pixel, a negative electrode electrically connected to the TFT, an organic emission layer positioned on the negative electrode, and a positive electrode positioned on the organic emission layer, the positive electrode including an auxiliary layer positioned on the organic emission layer, a conductive layer positioned on the auxiliary layer, and an insulation layer positioned on the conductive layer.
Abstract:
An organic light emitting display device includes a substrate having transmitting and pixel regions, the pixel regions being separated by the transmitting regions, at least one thin film transistor in each of the pixel regions, a plurality of transparent first conductive lines electrically connected to the thin film transistors and extending across the transmitting regions, a plurality of second conductive lines electrically connected to the thin film transistors and extending across the transmitting regions, a passivation layer, a plurality of pixel electrodes on the passivation layer, the pixel electrodes being separated and positioned to correspond to respective pixel regions, each of the pixel electrodes being electrically connected to and overlapping a corresponding thin film transistor, an opposite electrode overlapping the pixel electrodes in the transmitting and pixel regions, and an organic emission layer between the pixel electrodes and the opposite electrode.
Abstract:
An organic light-emitting display device includes a substrate, the substrate having a plurality of transmitting regions, a plurality of thin film transistors, a plurality of conductive lines, a passivation layer, a plurality of pixel electrodes on the passivation layer, an opposite electrode facing the plurality of pixel electrodes, an organic layer disposed among the plurality of pixel electrodes and the opposite electrode, and a plurality of masking films disposed in the plurality of transmitting regions.
Abstract:
An organic light-emitting display device includes a first substrate having transmitting regions and pixel regions separated from each other by the transmitting regions, a plurality of thin film transistors on the first substrate in the pixel regions, a passivation layer covering the plurality of thin film transistors, a plurality of pixel electrodes on the passivation layer and electrically connected to the thin film transistors, the pixel electrodes being in the pixel regions and overlapping the thin film transistors, an opposite electrode in the transmitting regions and the pixel regions, the opposite electrode facing the plurality of pixel electrodes and being configured to transmit light, an organic emission layer interposed between the pixel electrodes and the opposite electrode, and a color filter in corresponding pixel regions.
Abstract:
An organic light-emitting display apparatus includes a substrate, a plurality of pixel electrodes formed on the substrate, a counter electrode formed to cover all of the plurality of pixel electrodes, organic light emitting layers disposed between the plurality of pixel electrodes and the counter electrode, an encapsulation substrate disposed above the substrate to cover the counter electrode, a sealant formed along edges of the substrate and the encapsulation substrate to seal a space formed between the substrate and the encapsulation substrate, a filler filled in the space formed between the substrate and the encapsulation substrate, and bus electrodes disposed on an inner surface of the encapsulation substrate facing the counter electrode. Each of the bus electrodes includes projecting portions and a base portion connecting the projecting portions to each other. The projecting portions are connected to the counter electrode, and a connection portion of the each of the projecting portions to the counter electrode is disposed between the organic light-emitting layers.
Abstract:
A transparent organic light emitting display device having an improved transmittance, in which transmittance of external light is increased, the organic light emitting display device including: a substrate having transmitting regions interposed between pixel regions; thin film transistors positioned on a first surface of the substrate and respectively disposed in the pixel regions of the substrate; a passivation layer covering thin film transistors; pixel electrodes formed on the passivation layer and respectively electrically connected to the thin film transistors, the pixel electrodes are respectively located in an area corresponding to the pixel regions, and are disposed to respectively overlap and cover the thin film transistors; an opposite electrode facing the pixel electrodes and formed to be able to transmit light, the opposite electrode is located in the transmitting regions and the pixel regions and includes a first opening formed on a location corresponding to at least a portion of respective ones of the transmitting regions; and an organic emission layer interposed between respective ones of the pixel electrodes and the opposite electrode to emit light.
Abstract:
An organic light-emitting display device and a method of manufacturing the same, the organic light-emitting display device including: a substrate; a display unit disposed on the substrate; a sealing substrate disposed facing the display unit; a sealant adhering the substrate to the sealing substrate; and a getter formed on surfaces of the substrate, the sealing substrate, and the sealant that face a space formed inside the display device.
Abstract:
An organic light emitting diode device including a first electrode; a second electrode facing the first electrode; and an emitting layer interposed between the first electrode and the second electrode, wherein the first electrode includes an ytterbium (Yb) alloy represented by the following Chemical Formula 1: Yb-M (1), and in Chemical Formula 1, M is a metal including at least one of silver (Ag), calcium (Ca), chromium (Cr), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), molybdenum (Mo), ruthenium (Ru), indium (In), and tungsten (W).
Abstract:
A getter composition including a moisture absorbing material and a binder having a volatility of 400 ppm or less when heated to a temperature in the range of 60° C. to 120° C. for 2 hours and an organic light emitting diode device including the getter composition
Abstract:
An organic light emitting diode (OLED) device and a method of manufacturing the same, the OLED device including a substrate, a first electrode on the substrate, a buffer layer on the first electrode, an emission layer on the buffer layer, and a second electrode on the emission layer, wherein the buffer layer includes a transparent conductive oxide, and a metal or metal oxide having a work function lower than a work function of the transparent conductive oxide.