Abstract:
An architectural covering is presented having a rotatable drive element having a guide structure and a plurality of idler attachment elements and a drive element positioned over the rotatable drive element. The rotatable drive element is connected to a wall, ceiling or other structure by brackets. In one arrangement a drive shaft having at least one bearing is then attached to the brackets such that the rotatable drive elements rotate upon the bearings. This arrangement provides an efficient, simple and convenient manner of attaching a rotatable drive element to brackets for mounting.
Abstract:
In a shade system with a bracket supporting a shade storage roll, an anti-reversible power spring apparatus includes a biasing member and a housing with a receiver end and a connector end where the housing encloses the biasing member and the receiver end and the connector end contain the biasing member within the housing. A connector device is connected with the housing and a receiver device is connected with the housing where the connector is connectable with a receiver and where the receiver is connectable with a connector.
Abstract:
There is provided a motorized roller shade that includes a roller shade tube including an outer surface, an inner surface defining an inner cavity, and two end portions. The motorized shade further includes a shade attached to the outer surface of the roller shade tube, a counterbalancing unit configured to provide a counterbalancing force to the shade, and the roller shade tube further comprising substitution configurations to allow the roller shade tube to receive and operate with either a motor assembly or a manual operation assembly.
Abstract:
The present invention advantageously provides methods for manually and/or remotely controlling a motorized roller shade that includes a shade attached to a shade tube, a DC gear motor disposed within the shade tube and a microcontroller. One method includes detecting a manual movement of the shade using a sensor, determining a displacement associated with the manual movement, and, if the displacement is less than a maximum displacement, moving the shade to a different position by energizing the DC gear motor to rotate the shade tube. Another method includes receiving a command from a remote control, and moving the shade to a position associated with the command by energizing the DC gear motor to rotate the shade tube.
Abstract:
The present invention advantageously provides a motorized roller shade that includes a shade tube, a motor/controller unit and a power supply unit. The motor/controller unit is disposed within the shade tube, and includes a bearing, rotatably coupled to a support shaft, and a DC gear motor. The output shaft of the DC gear motor is coupled to the support shaft such that the output shaft and the support shaft do not rotate when the support shaft is attached to the mounting bracket.
Abstract:
A motorizable tilt shade system includes a header system where the header system includes an integral header attachment connection. At least one cord spool is provided within the header system and is connected with at least one suspension cord. A shade is suspended from the at least one suspension cord and a tilt cord pulley is connected with the at least one cord spool. A tilt cord is connected with the tilt cord pulley and with the shade such that the tilt cord and tilt cord pulley cooperate to tilt the shade. A drive shaft receiver is connected with the tilt cord pulley such that movement of the drive shaft receiver moves the tilt cord pulley.
Abstract:
A motorizable shade system and method consists of a header system where the header system includes an integral header attachment connection. At least one cord spool is provided within the header system and is connected with at least one suspension cord and a shade is suspended from the at least one suspension cord. A motor assembly attachment connection is provided in a motor assembly that is conformed to connect with the integral header attachment connection and the motor assembly also includes a motor assembly electrical connector. A power system with a power attachment connection is provided that is conformed to connect with the integral header attachment connection. The power system also includes a power system electrical connector that is conformed to connect with the motor assembly electrical connector. The motorizable shade system operates manually unless and until a motor assembly and power system are connected with the integral header attachment connection and the cord spool.
Abstract:
In a shade system with a bracket supporting a shade storage roll, an anti-reversible power spring apparatus includes at least one biasing system connected with the storage roll wherein the biasing system includes a biasing member with a first end and a second end wherein the first end moves with the storage roll as the storage roll rotates and wherein the second end is held stationary with reference to the storage roll when the storage roll rotates in one direction but not when the storage roll rotates in a second direction. A support for the at least one biasing system is provided wherein the support includes a protrusion that holds the second end against movement when the storage roll is rotated in the one direction but which allows passage of the second end past the protrusion when the storage roll is rotated in the second direction.
Abstract:
The present invention advantageously provides a motorized roller shade that includes a shade tube, a motor/controller unit and a power supply unit. The motor/controller unit is disposed within the shade tube, and includes a bearing, rotatably coupled to a support shaft, and a DC gear motor. The output shaft of the DC gear motor is coupled to the support shaft such that the output shaft and the support shaft do not rotate when the support shaft is attached to the mounting bracket.