Abstract:
The invention relates to an interactive gymnastics practice device which is used together with an image and sound system forming the gymnastics program to be followed by a user, comprising a first level of generally-pressure-sensitive surfaces, the surfaces extending essentially in a continuous manner and in substantially the same plane. The invention is characterized in that the device comprises at least one second level of surfaces which are pressure sensitive or which can control an action in response to a pressure, the second level surfaces extending essentially in a continuous manner and in substantially the same plane.
Abstract:
A fan assembly includes an annular nozzle and a system for creating a primary air flow. The nozzle includes an outer wall and an inner wall surrounded by the outer wall, the inner wall defining a bore having a bore axis. The nozzle also includes an interior passage located between the inner and outer walls, and extending about the bore axis for receiving an air flow, and an air outlet located at or towards the front of the nozzle for emitting the air flow. The nozzle is configured to emit the air flow through the air outlet in a direction extending away from the bore axis.
Abstract:
A method includes generating, based on at least one received signal, a first packet stream and a second packet stream. One of the first and second packet streams includes a packet associated with the other of the first and second packet streams. The first and second packet streams indicate respective buffer configuration sizes. The method further includes, prior to determining the respective buffer configuration sizes indicated by the first and second packet streams, allocating respective first and second portions of a dejitter buffer to the first and second packet streams. In at least one embodiment of the method, the allocating is performed by hardware coupled to the dejitter buffer.
Abstract:
A fan assembly for creating an air current includes a nozzle mounted on a base. The base includes an outer casing, a silencing member housed within the outer casing, an impeller housing located within the outer casing, the impeller housing having an air inlet and an air outlet, an impeller located within the impeller housing and a motor for driving the impeller about an axis to create an air flow through the impeller housing. The nozzle includes an interior passage for receiving the air flow from the air outlet of the impeller housing and a mouth through which the air flow is emitted from the fan assembly. The silencing member is located beneath the air inlet of the impeller housing and is spaced from the air inlet along said axis by a distance in the range from 5 to 60 mm.
Abstract:
A fan assembly for creating an air current includes a nozzle mounted on a base. The base comprises an outer casing, an impeller housing located within the outer casing, the impeller housing having an air inlet and an air outlet, an impeller located within the impeller housing and a motor for driving the impeller to create an air flow through the impeller housing. The nozzle includes an interior passage for receiving the air flow from the air outlet of the impeller housing and a mouth through which the air flow is emitted from the fan assembly.
Abstract:
A multi-standard single-chip receiver for digital demodulation of TV signals broadcasted over any of multiple digital television means, e.g., satellite, cable and terrestrial, is provided. The receiver can receive and demodulate a variety of different signal types received from one or more up-front tuners. A demodulator architecture in accordance with an embodiment of the present invention can be optimized to re-use common demodulation processing blocks for the different incoming signal types.
Abstract:
A fan assembly for creating an air current includes a bladeless fan assembly including a nozzle and a device for creating an air flow through the nozzle. The nozzle includes an interior passage and a mouth receiving the air flow from the interior passage. A Coanda surface located adjacent the mouth and over which the mouth is arranged to direct the air flow. The fan provides an arrangement producing an air current and a flow of cooling air created without requiring a bladed fan, that is, the air flow is created by a bladeless fan.
Abstract:
A fan assembly for creating an air current includes a nozzle mounted on a base. The base comprises an outer casing, an impeller housing located within the outer casing, the impeller housing having an air inlet and an air outlet, an impeller located within the impeller housing and a motor for driving the impeller to create an air flow through the impeller housing. The nozzle includes an interior passage for receiving the air flow from the air outlet of the impeller housing and a mouth through which the air flow is emitted from the fan assembly. A flexible sealing member is located between the outer casing and the impeller housing.
Abstract:
A bladeless fan assembly (100) for creating an air current comprises a nozzle (1) mounted on a base (16) housing means for creating an air flow through the nozzle (1). The nozzle (1) comprises an interior passage (10) for receiving the air flow from the base (16) and a mouth (12) through which the air flow is emitted. The nozzle (1) extends about an axis to define an opening (2) through which air from outside the fan assembly (100) is drawn by the air flow emitted from the mouth (12). The nozzle (1) comprises a surface over which the mouth (12) is arranged to direct the air flow. The surface comprises a diffuser portion (46) tapering away from the axis, and a guide portion (48) downstream from the diffuser portion (46) and angled thereto.
Abstract:
In one embodiment, the present invention includes a deinterleaver having an input interface to receive orthogonal frequency division multiplexing (OFDM) symbols from a demodulator, a memory coupled to the input interface to store the OFDM symbols, an output interface coupled to the memory to receive the OFDM symbols stored in the memory, and a digital phase lock loop (PLL) to control and adjust a reading rate of data from the memory responsive to dynamic and static channel conditions.