Abstract:
An optical connection closure has at least one connector port located within an external wall of the closure for receiving a connectorized optical fiber of a distribution cable on the inside of the closure and a pre-connectorized fiber optic drop cable on the outside of the closure. The closure includes a base, a cover affixed to the base and movable between a closed position and an opened position, and an end wall that defines at least a portion of at least one cable opening for receiving the distribution cable in a butt-type or a through-type closure configuration. The base and the cover define an interior cavity that optionally contains a splice tray for interconnecting the optical fiber of the distribution cable with a pigtail to create the connectorized optical fiber. The connector port may be located within an end wall, a bottom wall or a top wall of the closure.
Abstract:
There is provided splice trays and splice assemblies that provide convenient access to optical fiber slack within a relatively small area or volume. Some splice trays are adapted for use with microstructured optical fibers to further reduce the size of the splice tray or splice assembly. Some splice trays provide fiber routing devices on the cover of the splice tray. The fiber routing device may be positioned on an inside surface of the cover and/or on an outside surface of the cover. The splice trays and/or splice assemblies may be used with or as fiber drop terminals used within multiple dwelling units.
Abstract:
An optical fiber distribution enclosure includes a housing defining an interior, a first fiber distribution area disposed within an upper portion of the interior, a second fiber distribution area disposed within a lower portion of the interior and a signal splitting area disposed between the fiber distribution areas. A splitter module secured within the signal splitting area has a connectorized splitter input optical fiber and connectorized splitter output optical fibers. A fiber parking area is movably disposed within the lower portion adjacent the second fiber distribution area for temporarily storing splitter output optical fibers that are not routed to the fiber distribution areas. An input fiber distribution area disposed within the interior interconnects an optical fiber of a feeder cable with the splitter input optical fiber. The splitter output optical fibers are eventually routed to a fiber distribution area and interconnected with a corresponding optical fiber of a distribution cable.
Abstract:
There are provided fiber optic local convergence points (“LCPs”) adapted for use with multiple dwelling units (“MDUs”) that facilitate relatively easy installation and/or optical connectivity to a relatively large number of subscribers. The LCP includes a housing mounted to a surface, such as a wall, and a cable assembly with a connector end to be optically connected to a distribution cable and a splitter end to be located within the housing. The splitter end includes at least one splitter and a plurality of subscriber receptacles to which subscriber cables may be optically connected. The splitter end of the cable assembly of the LCP may also include a splice tray assembly and/or a fiber optic routing guide. Furthermore, a fiber distribution terminal (“FDT”) may be provided along the subscriber cable to facilitate installation of the fiber optic network within the MDU.
Abstract:
An installation closure having fiber management apparatus includes an outer shell and at least one cable centralizer disposed within the outer shell at a factory-assembled access location on a fiber optic distribution cable. The cable centralizer has a central channel for retaining the distribution cable and at least one routing slot for routing an optical fiber preterminated from the distribution cable at the access location. At least a portion of the outer shell is removed following deployment of the distribution cable and replaced with a conventional closure. An optical connector may be mounted upon the end of the preterminated optical fiber and the installation closure may further include an end centralizer having a central channel for retaining the distribution cable and at least one connector slot for retaining the connector. The replacement closure includes at least one connector port for receiving the connector from the inside of the installation closure.
Abstract:
An optical termination pedestal defines an interior cavity for interconnecting an optical fiber of a distribution cable and an optical fiber of a drop cable. The pedestal includes a base, a housing positioned over the base, and a plate secured to the housing or the base. The plate separates the interior cavity into a first compartment and a second compartment and has at least one cable port for routing the distribution cable into the first compartment. At least one connector port may be provided on the plate for receiving a connectorized optical fiber of the distribution cable from the first compartment and a pre-connectorized drop cable from the second compartment. The plate is provided with an O-ring to seal the first compartment relative to the second compartment. As a result, a sealed splice closure is created within the interior cavity without the need for a separate enclosure.
Abstract:
An optical connection closure has at least one connector port located within an external wall of the closure for receiving a connectorized optical fiber of a distribution cable on the inside of the closure and a pre-connectorized fiber optic drop cable on the outside of the closure. The closure includes a base, a cover affixed to the base and movable between a closed position and an opened position, and an end wall that defines at least a portion of at least one cable opening for receiving the distribution cable in a butt-type or a through-type closure configuration. The base and the cover define an interior cavity that optionally contains a splice tray for interconnecting the optical fiber of the distribution cable with a pigtail to create the connectorized optical fiber. The connector port may be located within an end wall, a bottom wall or a top wall of the closure.
Abstract:
A protector panel for telecommunication wires has a plurality of rows of sockets. Each of the sockets has two pairs of receptacles for receiving pins of a plug-in excess voltage protector module. Rows of pins protrude from the back of the panel, each of the pins registering with one of the receptacles so as to provide two pairs of pins for each socket pattern. A pair of outside-plant wires extends from one of the pairs of pins of each socket pattern. Similarly, a pair of customer premises wires extends from the other of the pairs of each socket pattern. The pairs of wires are twisted substantially along their entire length. The amount of twist of at least some of the pairs of the outside-plant wires within each row differs from the amount of twist of at least some of the other pairs of outside-plant wires. Similarly, the amount of twist of the customer premises wires also differs from others in the same row. Further, the twisted pairs that are adjacent each other, but in different rows, will have different pitches. The differences in the amounts of twist of the pairs of wires enable the protector panel to handle high frequency transmissions while minimizing cross talk.
Abstract:
There is provided fiber drop terminals (“FDTs”) and related equipment for providing selective connections between optical fibers of distribution cables and optical fibers of drop cables, such as in multiple dwelling units. The FDTs require relatively little area and/or volume while providing convenient connectivity for a relatively large number of optical connections. The FDTs include adapters for optically connecting the connectors, and the adapters of some FDTs are adapted to rotate, move, or otherwise be removed to provide convenient access for technicians. Some FDTs and the related equipment are adapted for use with microstructured optical fiber having preferred bend characteristics.
Abstract:
There are provided fiber optic local convergence points (“LCPs”) adapted for use with multiple dwelling units (“MDUs”) that facilitate relatively easy installation and/or optical connectivity to a relatively large number of subscribers. The LCP includes a housing mounted to a surface, such as a wall, and a cable assembly with a connector end to be optically connected to a distribution cable and a splitter end to be located within the housing. The splitter end includes at least one splitter and a plurality of subscriber receptacles to which subscriber cables may be optically connected. The splitter end of the cable assembly of the LCP may also include a splice tray assembly and/or a fiber optic routing guide. Furthermore, a fiber distribution terminal (“FDT”) may be provided along the subscriber cable to facilitate installation of the fiber optic network within the MDU.