摘要:
A splice closure has a frame with an end cap on one end, the end cap having apertures for the passage of express cables and drop cables. Coupler cassettes are carried by the frame in a coupler cassette subassembly. Each coupler cassette houses a plurality of couplers. The coupler cassettes are interconnected such that a single input optical fiber entering the coupler cassette subassembly results in multiple output optical fibers leaving the coupler cassette subassembly. A splice organizer comprising a plurality of splice holders is carried by the frame exterior and adjacent to the coupler cassette subassembly for retaining splices to and from the coupler cassettes. A housing encloses the frame, coupler cassette subassembly and splice organizer. An optical fiber storage tray is located adjacent the splice organizer for storing any excess express or drop cable optical fibers that are not spliced to any of the output optical fibers of the coupler cassette subassembly.
摘要:
An optical connection closure has at least one connector port located within an external wall of the closure for receiving a connectorized optical fiber of a distribution cable on the inside of the closure and a pre-connectorized fiber optic drop cable on the outside of the closure. The closure includes a base, a cover affixed to the base and movable between a closed position and an opened position, and an end wall that defines at least a portion of at least one cable opening for receiving the distribution cable in a butt-type or a through-type closure configuration. The base and the cover define an interior cavity that optionally contains a splice tray for interconnecting the optical fiber of the distribution cable with a pigtail to create the connectorized optical fiber. The connector port may be located within an end wall, a bottom wall or a top wall of the closure.
摘要:
There is provided a cable attachment for sealing and retaining cables entering an opening of a telecommunications closure. The cable attachment includes an adapter body with an opening through which the cable passes; and a grip device and grommet device are also located within the opening of the adapter body for strain relieving and sealing, respectively, the cable passing through the adapter body. The cable attachment further includes a bolt portion that is selectively moveable relative to the adapter body for applying a force to the grommet device for selectively creating a seal about an outer surface of the cable. Alternative designs for sealing and/or strain relieving cables entering a closure are provided.
摘要:
An outdoor cabinet interconnects an optical fiber of a feeder cable with at least two optical fibers of a distribution cable at a local convergence point in an optical network. The cabinet defines an interior compartment comprising a feeder cable side having a feeder cable entry port and a feeder cable slack storage area, a distribution cable side having a distribution cable entry port and a distribution cable slack storage area, at least one splice tray and at least one coupler module. A feeder pigtail is routed from the splice tray and connected to an adapter provided on the coupler module. At least two distribution pigtails are routed from the splice tray and connected to adapters provided on the coupler module. The coupler module splits an optical signal carried on the optical fiber of the feeder cable into optical signals carried on the optical fibers of the distribution cable.
摘要:
A closure interconnects at least one optical fiber of a feeder cable with two or more optical fibers of a distribution cable at a local convergence point in an optical network. The base of the closure defines a fiber storage and fiber management area adjacent one of the end caps and a fiber coupling area adjacent the other end cap. The fiber coupling area includes one or more coupler modules for splitting an optical signal carried on the optical fiber of the feeder cable into different optical signals carried on the two or more optical fibers of the distribution cable. The optical fiber of the feeder cable is spliced to an input optical fiber of a connectorized pigtail and then split into two or more output optical fibers of connectorized pigtails. The output optical fibers of the pigtails are then spliced to optical fibers of the distribution cable.
摘要:
An optical connection closure has at least one connector port located within an external wall of the closure for receiving a connectorized optical fiber of a distribution cable on the inside of the closure and a pre-connectorized fiber optic drop cable on the outside of the closure. The closure includes a base, a cover affixed to the base and movable between a closed position and an opened position, and an end wall that defines at least a portion of at least one cable opening for receiving the distribution cable in a butt-type or a through-type closure configuration. The base and the cover define an interior cavity that optionally contains a splice tray for interconnecting the optical fiber of the distribution cable with a pigtail to create the connectorized optical fiber. The connector port may be located within an end wall, a bottom wall or a top wall of the closure.
摘要:
A mixed media outlet is provided that is capable of being mounted upon a wall and that includes ports that are typically designed to provide separate access to an electrical network and to an optical network. The wall mounted outlet can therefore permit a telephone to be connected to the electrical network, and a computer to be connected to the optical network. Alternatively, the outlet can permit a telephone to also be connected to either the same or a different optical network than the computer. The mixed media outlet includes a housing adapted to be wall mounted and first and second ports that are disposed within openings defined by the housing, such as a data port and a voice port. The mixed media outlet also includes an electro-optic converter connected to the first port for converting between electrical and optical signals such that electrical signals presented at the first port are converted to corresponding optical signals for transmission to an optical network and optical signals delivered by an optical fiber are converted to electrical signals for transmission via the first port to a computer, for example. The mixed media outlet can also include a fiber port for optically interfacing the optical fiber and the electro-optic converter in order to permit optical communication therebetween. While the fiber port can be in the same plane as the data and voice ports, the fiber port can lie in a different plane in some embodiments. Further, the mixed media outlet can include a protective subhousing covering at least the electro-optic converter for protecting the electro-optic converter from electromagnetic interference.