Abstract:
Disclosed is a display device adapted to selectively display a normal image, a stereoscopic image, a multi-view image and a stereoscopic multi-view image is disclosed. The display device includes a liquid crystal panel displaying an image; a polarizer disposed on the liquid crystal panel; a liquid crystal lens disposed on the polarizer; and a polarizing member interposed between the liquid crystal lens and the liquid crystal panel, wherein an axis of light transmitted through the liquid crystal lens coincides with an optical axis of the polarizer. Accordingly, the display device can selectively display a normal image, a stereoscopic image, a multi-view image and a stereoscopic multi-view image, while improving the picture quality and the brightness.
Abstract:
Disclosed are an electrically-driven liquid crystal lens which includes a light shade to be switched on/off according to whether or not voltage is applied, reducing a cell gap of a liquid crystal layer, and a stereoscopic display device using the same, the electrically-driven liquid crystal lens includes first and second substrates opposite each other and each including plural lens regions and a light shade provided at a boundary of each lens region, first electrodes formed in a given direction on the first substrate in each lens region, a second electrode formed on the second substrate and having an aperture corresponding to the light shade, first and second light shade switching electrodes formed at the light shade and extending parallel to the first electrodes, a liquid crystal layer between both the substrates, and a polarizer plate formed above the second substrate and having a first transmission axis.
Abstract:
An electrically-driven liquid crystal lens, which can be switched between a convex lens and a concave lens by changing an optical path difference based on an electric field application, and a stereoscopic display device using the same are disclosed. The electrically-driven liquid crystal lens includes first and second substrates arranged opposite each other and each defining a plurality of lens regions, a plurality of first electrodes formed on the first substrate based on the lens region and spaced apart from one another, a second electrode formed over the entire surface of the second substrate, a liquid crystal layer filled between the first substrate and the second substrate, first and second voltage sources to apply different voltages to the plurality of first electrodes in each lens region, the first and second voltage sources providing the liquid crystal layer between the first and second substrates with a convex lens optical path difference and a concave lens optical path difference, respectively, with respect to each lens region, and a selector to select any one of the first and second voltage sources so as to apply voltages to the first electrodes.
Abstract:
A three-dimensional image display capable of reducing a difference between a resolution variation rate in a pixel column direction and a resolution variation rate in a pixel row direction and preventing a color separation phenomenon is disclosed. The three-dimensional image display includes a display panel in which n (n is a natural number) disparity images are displayed and the same disparity images are distributed and displayed in subpixels of the same color, and a lenticular sheet which divides travel paths of the disparity images using a plurality of lenticular lenses which are obliquely arranged in front of the display panel, and the long axes of the lenticular lenses are parallel to an extension line of the subpixels in which the same disparity images are displayed.