Abstract:
An optical pickup compatible with at least two types of optical recording media using light beams having respectively different wavelengths for recording and reproducing information. In the optical pickup, a first laser light source emits a light beam having a relatively shorter wavelength. A first photodetector detects a reflected light beam with respect to the relatively shorter wavelength. An objective lens forms an annular shielding region between a near axis region of a relatively smaller radius and a far axis region of a relatively larger radius. A laser unit emits a light beam having a relatively longer wavelength, and detects only a light beam passing though the near axis region in the objective lens among reflected light beams having the relatively longer wavelength. A plurality of beam splitters directs the light beams emitted from the first laser light source and the laser unit to the objective lens, and directs the light beam reflected from each of the optical recording media to a corresponding one of the first photodetector and the laser unit. The optical pickup of the present invention has compatibility with respect to disks regardless of the thicknesses and various aspects of the disks, and can detect a good signal. Also, the optical pickup is manufactured and mass-produced at a low cost.
Abstract:
An optical pickup device which can obtain a stable reproduction signal by increasing the numerical aperture of an objective lens includes an objective lens facing a disc, a light source for radiating light to the disc via the objective lens, a beam splitter provided between the light source and objective lens for directing the light reflected from the disc in a path different from that of the light travelled from the light source, a photodetector for detecting the light reflected from the disc and travelled via the beam splitter, and a diaphragm provided between the beam splitter and light source and having a predetermined numerical aperture.
Abstract:
An optical pickup device which is efficient in light use having little spherical aberration. The optical pickup device of an optical pickup includes an objective lens, disposed opposite a disk, having a light passing region divided into central, intermediate and periphery regions corresponding to a near axis area, an intermediate axis area and a far axis area of incident light, where the curvature of the central and peripheral regions is optimized for a thin disk and that of the intermediate region is optimized for a thick disk; a light source irradiating light toward a disk through the objective lens; a photo detector for detecting light reflected from the disk; and a beam splitter, disposed between the objective lens and the light source, for transmitting light from the light source toward the objective lens and for diffracting light reflected from the disks toward the photo detector. Therefore, the optical pickup device can be used for both compact disks (CDs) that are thick using light beam passing the near and intermediate regions of said objective lens, and digital video disks (DVDs) that are thin using light beam passing the near and far axis regions of said objective lens, and detect signals without picking up noise regardless of the thickness of the disk.
Abstract:
An optical pickup device which can obtain a stable reproduction signal by an increased numerical aperture of an objective lens. The optical pickup device includes an objective lens unit having an objective lens facing a disc and having a predetermined effective diameter and at least two auxiliary lenses provided in exterior sides of the objective lens for directing +1st-order diffracted light to a light path different from that of the light passing through the objective lens, a light source for irradiating light onto the disc through the objective lens, a light splitter interposed between the light source and the objective lens for directing the light reflected from the disc to a light path different from that from the light source, a photodetector for detecting the light reflected from the disc and transmitted via the light splitter, and at least two diffracted light detectors for detecting diffracted light incident from the auxiliary lenses. Therefore, a high reproduction signal and a stable track signal can be obtained.
Abstract:
An image stabilizing apparatus may include a fixing member disposed to a lens assembly having a through hole of which a center coincides with an optical axis of the lens assembly, a moving member disposed to move perpendicular to the optical axis with respect to the fixing member having a lens holder projecting in a direction of the optical axis to hold a compensating lens, a driving portion causing the moving member to move in a first direction perpendicular to the optical axis and in a second direction perpendicular to the optical axis and the first direction, four position determining portions formed in the first direction and the second direction on an outer circumferential surface of the lens holder of the moving member, and four stoppers projecting from an outer circumferential surface of the through hole of the fixing member to the moving member.
Abstract:
A lens system and a photographing apparatus including the lens system are provided, the lens system including a first sub lens system that includes a plurality of lens groups, and a second sub lens system that includes a replacement lens group that replaces or is replaced by some of the plurality of lens groups.
Abstract:
A method of compensating for vibration and an imaging apparatus are provided. The method of compensating for vibration includes determining whether a vibration compensation starting condition is satisfied, and starting compensating for vibration prior to operating a shutter, if the vibration compensation starting condition is satisfied. Accordingly, a shutter lag is reduced and power consumption is reduced, and accuracy of vibration compensation is improved.
Abstract:
An image stabilizing apparatus may include a fixing member disposed to a lens assembly having a through hole of which a center coincides with an optical axis of the lens assembly, a moving member disposed to move perpendicular to the optical axis with respect to the fixing member having a lens holder projecting in a direction of the optical axis to hold a compensating lens, a driving portion causing the moving member to move in a first direction perpendicular to the optical axis and in a second direction perpendicular to the optical axis and the first direction, four position determining portions formed in the first direction and the second direction on an outer circumferential surface of the lens holder of the moving member, and four stoppers projecting from an outer circumferential surface of the through hole of the fixing member to the moving member.
Abstract:
An optical pickup which is compatible with different types of media is disclosed. A plurality of light sources emit light with different wavelengths. Light path changers change the path of light emitted by the plurality of light sources so that the light is incident upon an objective lens. The objective lens focuses the incident light onto a recording medium. A collimating lens is disposed in front of the objective lens to collimate the incident lights. The collimating lens is movable to correct a spherical aberration. A diffractive optical element is disposed in a path of a light with a short wavelength and has a diffractive surface to correct a chromatic aberration.
Abstract:
An object lens arranged on a light proceeding path to focus light on a recording medium includes a first surface that is an incident surface on which light is incident, a second surface from which light exits to be focused on the recording medium, and a diffractive optical element disposed on at least one of the first and second surfaces and which has a refractivity of fD/f
Abstract translation:布置在光行进路径上以将光聚焦在记录介质上的物镜包括作为光入射的入射表面的第一表面,光从其出射以聚焦在记录介质上的第二表面,以及衍射光学 元件设置在第一和第二表面中的至少一个上,并且具有fD / f <5的折射率,fD是衍射光学元件的焦距,f是物镜的焦距。 物镜的数值孔径为0.75以上。