Abstract:
Disclosed herein is an optical disc apparatus including: an optical pickup radiating light having a first wavelength provided for an optical disc medium of a first type and light having a second wavelength which is smaller than the first wavelength and provided for another optical disc medium of a second type; a signal outputting section outputting a signal according to light reflected by the optical disc medium to reflect light radiated by the optical pickup; and a type determination section requesting the optical pickup to radiate light having the first wavelength to an object optical disc medium to acquire the signal output by the signal outputting section and determining the type of the object optical disc medium in accordance with the number of peaks appearing in the acquired output signal output by the signal outputting section while moving the optical pickup in a direction to the object optical disc medium.
Abstract:
Provided is an optical pickup device and a method of aligning a twin-light source in an optical disc drive. The method operates two light emitting chips in the light source simultaneously to cause two laser beams to be transmitted through a grating element at the same time. Location errors and rotation errors of the two light emitting chips with respect to the grating element may be corrected while monitoring the laser beams transmitted through the grating element.
Abstract:
Provided is a recording apparatus including a self-excited oscillation semiconductor laser that has a double quantum well separate confinement heterostructure and includes a saturable absorber section to which a negative bias voltage is applied and a gain section into which a gain current is injected, an optical separation unit, an objective lens, a light reception element, a pulse detection unit, a reference signal generation unit, a phase comparison unit, a recording signal generation unit, and a control unit.
Abstract:
An optical pickup includes a plurality of light sources, an objective lens, a diffractive optical element, and a light-detecting unit. The various light sources emit light of wavelengths that are different from each other. The objective lens focuses light on an optical disc. The diffractive optical element includes a diffracting portion and a light-blocking portion. The diffracting portion diffracts return light reflected from a first recording layer of the optical disc where information is being read or written. The light-blocking portion blocks stray light reflected from a second recording layer of the optical disc that is different from the first recording layer. The light-detecting unit receives the diffracted light of the diffractive optical element and generates an output signal to generate a tracking error signal based on this diffracted light. Furthermore, the light-blocking portion includes a plurality of light-blocking patterns which block light of wavelengths that are different from each other.
Abstract:
An object is to suppress precipitation and adhesion of an organotin compound in an optical module which is incorporated into an optical pickup device and so on. The optical pickup 100 includes light sources 1, 10, optical components 2, 3 transmitting light emitted from the light sources, a driving circuit 28 for driving the light sources, that is electrically connected to at least one component other than the driving circuit using solder 27a, 27b containing a flux, and heat radiating members 22a, 22b for radiating heat generated in the light sources 1, 10, wherein the heat radiating members 22a, 22b can generate only ethanol, or ethanol and methanol so that a proportion of ethanol is more than that of methanol.
Abstract:
Provided are an optical pickup and an optical information storage system including the same. The optical pickup includes a diffracting element that splits incident light into main light and a plurality of sub light. The diffracting element has at least three regions including first through third regions. A second region is disposed between a first region and a third region and has a phase difference from the first and third regions. The optical pickup detects a tracking error signal by using light diffracted by the diffracting element.
Abstract:
Provided are a light detecting element, and an optical pick-up device and an optical disc drive including the light detecting element. The light detecting element includes a terminal resistance unit that is provided between an amplification unit and an output port to limit an electric current of the output signal.
Abstract:
An optical pickup device is provided which is compatible with at least two types of optical disc standards having different NAs and which controls an effective NA when a light beam for an optical disc standard having a relatively small NA is converged, thereby forming a desired spot. An inner part 131B and an outer part 131F of an objective lens element 143 are provided with diffraction structures different from each other. A condition (1), DO11×DO12>0, and a condition (2), DO21×DO22
Abstract:
In a diffractive element, its grating pattern is so configured that a diffraction angle of a diffracted light beam of a light source that is subject to the first-order diffraction in a diffraction area is matched with an angle of a light beam passing through the diffractive area emitted from a light source and a light source position is matched with a light originating point of the light source that emits a light beam to be transmitted, and the center of light intensity distribution is matched with that of the light source passing through the diffractive element by inclining an optical axis of the light source. A position of the diffractive element is adjusted based on an electric current value generated when a reflected return path light beam of the light source is diffracted by the diffractive element and enters the light source.
Abstract:
An optical pickup apparatus including an objective lens capable of enhancing temperature characteristics and wavelength characteristics, and which enables compatibility for three types of optical discs of BDs, DVDs, and CDs by using the objective lens in common, an optical information recording and reproducing apparatus, and an objective lens suitable for it. In a first optical path difference providing structure in which at least a first basic structure and a second basic structure are superimposed on each other, an amount of a level difference in an optical axis direction can be reduced, whereby it becomes possible to suppress the lowering of a diffraction efficiency when wavelength changes. Further, in the first basic structure and the second basic structure deterioration of the spherical aberration due to the change of the refractive index of the objective lens can be corrected by utilizing a phenomenon that the wavelength of the light source rises similarly due to a rise in the environmental temperature.