摘要:
A touchscreen display system (418) is provided which includes a touchscreen (420), a touchscreen input detector (422), a capacitive sensor driver (423), and a display driver (424). The touchscreen input detector (422) is coupled to a first layer (504) of the touchscreen (420) and determines a touchscreen (420) input in response to sensing tactile inputs during a sensing time interval (610). The display driver (424) is coupled to a second layer (506) of the touchscreen (420) and provides a drive voltage (606, 608) at a first voltage level to the plurality of optical shutter segments (508) during a first portion (620) of the sensing time interval (610) and maintains the drive voltage (606, 608) at substantially zero volts during a second portion (622) of the sensing time interval (610), the second portion (622) being greater than half of the sensing time interval (610).
摘要:
A system and a method are provided for driving a liquid crystal display (LCD) (30) in manner to reduce audible noise therefrom. A video display system (18) includes a thin film transistor liquid crystal display panel (32) having a plurality of gate electrodes (56), a plurality of source electrodes (58), and a common electrode (62). A common electrode function generator (40) is provided to generate a voltage waveform to drive the common electrode at a plurality of frequencies.
摘要:
A field emission display (100) includes a cathode plate (104) having a plurality of electron emitters (112) and ballast resistors (118), an anode plate (120) having an anode (124), and a temperature compensation circuit (130) having an input (142), an output (134), and a current output (138). Input (142) is connected to unregulated voltage (132), output (134) is connected to gate (116), and current output (138) is connected to temperature sensing element (148). Preferably, temperature sensing element (148) is mounted on cathode plate (104) and matches the temperature vs. resistance characteristics of ballast resistors (118). Temperature compensation circuit (130) outputs current (220) to temperature sensing element (148) and receives ballast voltage (230) from temperature sensing element (148) as a function of temperature of cathode plate (104). Temperature compensation circuit (130) outputs gate voltage (238) to adjust electron emission current (114), and subsequently brightness for variations in temperature.
摘要:
An improved dielectric layer of an electroluminescent laminate, and method of preparation are provided. The dielectric layer is formed as a thick layer from a ceramic material to provide:a dielectric strength greater than about 1.0.times.10.sup.6 V/m;a dielectric constant such that the ratio of the dielectric constant of the dielectric material to that of the phosphor layer is greater than about 50:1;a thickness such that the ratio of the thickness of the dielectric layer to that of the phosphor layer is in the range of about 20:1 to 500:1; anda surface adjacent the phosphor layer which is compatible with the phosphor layer and sufficiently smooth that the phosphor layer illuminates generally uniformly at a given excitation voltage.The invention also provides for electrical connection of an electroluminescent laminate to voltage driving circuity with through hole technology. The invention also extends to laser scribing the transparent conductor lines of an electroluminescent laminate.
摘要翻译:提供了电致发光层压板的改进的介电层及其制备方法。 介电层由陶瓷材料形成为厚层,以提供:大于约1.0×10 6 V / m 2的介电强度; 介电常数使得介电材料的介电常数与荧光体层的介电常数之比大于约50:1; 使得电介质层的厚度与荧光体层的厚度的比率在约20:1至500:1的范围内的厚度; 以及与荧光体层相容并且足够光滑的磷光体层的表面,使得荧光体层在给定的激发电压下大致均匀地照射。 本发明还提供电致发光层压板与通孔技术的电压驱动电路的电连接。 本发明还延伸到激光刻划电致发光层压板的透明导体线。