Abstract:
A transfer belt is driven by a plurality of supporting rollers. A unit frame supports the supporting rollers in a rotatable manner. At least one of the supporting rollers includes a cylindrical member having a substantially same outer diameter over an entire length thereof. Each end portion of the cylindrical member in a longitudinal direction is supported by the unit frame via a bearing in a rotatable manner.
Abstract:
A neutralization unit for use in an image forming apparatus includes a support member made of an insulating material, an electric-charge removing member made of an electric conductive material, and a rib made of an insulating material. The electric-charge removing member, fixed on the support member, removes electric charge from a back face of the recording medium after a toner image is transferred to a front face of a recording medium at a transfer nip. The electric-charge removing member includes a plurality of exposed areas along a longitudinal direction of the electric-charge removing member. The rib, provided on the support member, has a curved peripheral side and protrudes from a surface of the electric-charge removing member. The back face of the recording medium is contactable at the curved peripheral side of the rib when the recording medium is transported from the transfer nip.
Abstract:
A belt tracking system for controlling the lateral position of a movable belt entrained about a plurality of generally parallel rollers for moving in a trans-axial direction perpendicular to an axial direction in which the rollers extend parallel to each other includes a roller shaft, a slidable member, and a rotation restrictor. The roller shaft extends outward in the axial direction from an axial end of a specific one of the plurality of generally parallel rollers. The slidable member is slidably disposed around the roller shaft to move along the roller shaft as the belt moves laterally outward in the axial direction. The rotation restrictor is disposed adjacent to the slidable member to restrict rotation of the slidable member around the roller shaft.
Abstract:
A belt assembly includes a belt formed into an endless loop, a plurality of support rollers with a rotary shaft, a shaft-end retainer, a movable supporting member, and a drive transmission device. The plurality of support rollers includes a first support roller and a second support roller. The shaft-end retainer is disposed at each end of the rotary shaft of the plurality of support rollers. The movable supporting member supports the first support roller and is movably disposed relative to the shaft-end retainer. The drive transmission device transmits a driving force to one of the plurality of support rollers. The drive transmission device and the movable supporting member are disposed on a same side as the shaft-end retainer in an axial direction of the plurality of support rollers. The drive transmission device is disposed between the shaft-end retainer and the movable supporting member in the axial direction.
Abstract:
A belt assembly includes a belt formed into an endless loop, a plurality of support rollers with a rotary shaft, a shaft-end retainer, a movable supporting member, and a drive transmission device. The plurality of support rollers includes a first support roller and a second support roller. The shaft-end retainer is disposed at each end of the rotary shaft of the plurality of support rollers. The movable supporting member supports the first support roller and is movably disposed relative to the shaft-end retainer. The drive transmission device transmits a driving force to one of the plurality of support rollers. The drive transmission device and the movable supporting member are disposed on a same side as the shaft-end retainer in an axial direction of the plurality of support rollers. The drive transmission device is disposed between the shaft-end retainer and the movable supporting member in the axial direction.
Abstract:
A belt tracking system for controlling the lateral position of a movable belt entrained about a plurality of generally parallel rollers for moving in a trans-axial direction perpendicular to an axial direction in which the rollers extend parallel to each other includes a roller shaft, a stationary member, a slidable member, and a biasing mechanism. The roller shaft extends outward in the axial direction from an axial end of a specific one of the plurality of generally parallel rollers. The stationary member is fixed in position adjacent to the roller shaft to define a first interfacial surface therealong. The slidable member is co-movably coupled with the roller shaft to define a second interfacial surface therealong inclined relative to the axial direction. The biasing mechanism is connected to the roller shaft to press the slidable member against the stationary member.
Abstract:
A belt positioning system for positioning a movable belt entrained about a plurality of generally parallel rollers for moving in a trans-axial direction perpendicular to an axial direction in which the rollers extend parallel to each other includes a tapered flange. The tapered flange is operatively connected to an axial end of a specific one of the plurality of generally parallel rollers, and includes a generally planar contact surface and an angled guide surface. The generally planar contact surface extends generally perpendicular to the axial direction to contact an adjoining edge of the belt. The angled guide surface extends radially outward from the contact surface and has a diameter increasing outward in the axial direction.
Abstract:
A roller device that can be exchangeably used in an image forming apparatus includes a roller, a shaft, and two grip members. The roller is configured to cover the shaft along the rotation axis and have two roller ends from which the two shaft end portions of the shaft are projected outwardly along the rotation axis. A shaft is configured to have a rotation axis at a center thereof and have two shaft end portions. The two grip members are each configured to be rotatably disposed to a respective shaft end portion of the two shaft end portions.
Abstract:
An image forming apparatus includes an image carrier, a transferor, a fixing unit, and a guide. The image carrier carries a toner image. The transferor opposes the image carrier to form a transfer nip and transfers the toner image on the image carrier onto a recording medium at the transfer nip. The fixing unit fixes the toner image on the recording medium. The guide guides the recording medium bearing the toner image from the transferor toward the fixing unit and includes a surface portion directly contacting the recording medium. The surface portion includes a material for charging the recording medium to have a polarity opposite to the polarity of a toner forming the toner image.
Abstract:
A neutralization unit for use in an image forming apparatus includes a support member made of an insulating material, an electric-charge removing member made of an electric conductive material, and a rib made of an insulating material. The electric-charge removing member, fixed on the support member, removes electric charge from a back face of the recording medium after a toner image is transferred to a front face of a recording medium at a transfer nip. The electric-charge removing member includes a plurality of exposed areas along a longitudinal direction of the electric-charge removing member. The rib, provided on the support member, has a curved peripheral side and protrudes from a surface of the electric-charge removing member. The back face of the recording medium is contactable at the curved peripheral side of the rib when the recording medium is transported from the transfer nip.