Abstract:
A belt positioning system for positioning a movable belt entrained about a plurality of generally parallel rollers for moving in a trans-axial direction perpendicular to an axial direction in which the rollers extend parallel to each other includes a flange. The flange is operatively connected to an axial end of a specific one of the plurality of generally parallel rollers to define a contact surface therealong which extends generally perpendicular to the axial direction to contact an adjoining edge of the belt. The contact surface of the flange is spaced apart from the axial end of the roller in the axial direction.
Abstract:
A belt positioning system for positioning a movable belt entrained about a plurality of generally parallel rollers for moving in a trans-axial direction perpendicular to an axial direction in which the rollers extend parallel to each other includes a flange. The flange is operatively connected to an axial end of a specific one of the plurality of generally parallel rollers to define a contact surface therealong which extends generally perpendicular to the axial direction to contact an adjoining edge of the belt. The contact surface of the flange is spaced apart from the axial end of the roller in the axial direction.
Abstract:
A belt tracking system for controlling the lateral position of a movable belt entrained about a plurality of generally parallel rollers for moving in a trans-axial direction perpendicular to an axial direction in which the rollers extend parallel to each other includes a roller shaft, a stationary member, a slidable member, and a biasing mechanism. The roller shaft extends outward in the axial direction from an axial end of a specific one of the plurality of generally parallel rollers. The stationary member is fixed in position adjacent to the roller shaft to define a first interfacial surface therealong. The slidable member is co-movably coupled with the roller shaft to define a second interfacial surface therealong inclined relative to the axial direction. The biasing mechanism is connected to the roller shaft to press the slidable member against the stationary member.
Abstract:
A belt positioning system for positioning a movable belt entrained about a plurality of generally parallel rollers for moving in a trans-axial direction perpendicular to an axial direction in which the rollers extend parallel to each other includes a tapered flange. The tapered flange is operatively connected to an axial end of a specific one of the plurality of generally parallel rollers, and includes a generally planar contact surface and an angled guide surface. The generally planar contact surface extends generally perpendicular to the axial direction to contact an adjoining edge of the belt. The angled guide surface extends radially outward from the contact surface and has a diameter increasing outward in the axial direction.
Abstract:
A belt positioning system for positioning a movable belt entrained about a plurality of generally parallel rollers for moving in a trans-axial direction perpendicular to an axial direction in which the rollers extend parallel to each other includes a flange. The flange is operatively connected to an axial end of a specific one of the plurality of generally parallel rollers to define a contact surface therealong which extends generally perpendicular to the axial direction to contact an adjoining edge of the belt. The contact surface of the flange is spaced apart from the axial end of the roller in the axial direction.
Abstract:
A belt tracking system for controlling the lateral position of a movable belt entrained about a plurality of generally parallel rollers for moving in a trans-axial direction perpendicular to an axial direction in which the rollers extend parallel to each other includes a roller shaft, a stationary member, a slidable member, and a biasing mechanism. The roller shaft extends outward in the axial direction from an axial end of a specific one of the plurality of generally parallel rollers. The stationary member is fixed in position adjacent to the roller shaft to define a first interfacial surface therealong. The slidable member is co-movably coupled with the roller shaft to define a second interfacial surface therealong inclined relative to the axial direction. The biasing mechanism is connected to the roller shaft to press the slidable member against the stationary member.
Abstract:
A belt positioning system for positioning a movable belt entrained about a plurality of generally parallel rollers for moving in a trans-axial direction perpendicular to an axial direction in which the rollers extend parallel to each other includes a tapered flange. The tapered flange is operatively connected to an axial end of a specific one of the plurality of generally parallel rollers, and includes a generally planar contact surface and an angled guide surface. The generally planar contact surface extends generally perpendicular to the axial direction to contact an adjoining edge of the belt. The angled guide surface extends radially outward from the contact surface and has a diameter increasing outward in the axial direction.
Abstract:
A belt positioning system for positioning a movable belt entrained about a plurality of generally parallel rollers for moving in a trans-axial direction perpendicular to an axial direction in which the rollers extend parallel to each other includes a flange. The flange is operatively connected to an axial end of a specific one of the plurality of generally parallel rollers to define a contact surface therealong which extends generally perpendicular to the axial direction to contact an adjoining edge of the belt. The contact surface of the flange is spaced apart from the axial end of the roller in the axial direction.
Abstract:
A belt tracking system for adjusting misalignment of a movable belt in an axial direction of a plurality of rollers about which the movable belt is entrained includes a slope member and a stationary shaft guide. The slope member is disposed at both ends of at least one of the plurality of rollers in the axial direction, to tilt the roller as the belt moves in the axial direction. The stationary shaft guide contacts the slope member. A distance between a contact point of the slope member that contacts the stationary shaft guide and an end portion of the slope member in the axial direction is longer than a maximum traveling distance that the slope member travels in the axial direction.
Abstract:
A belt tracking system for controlling the lateral position of a movable belt entrained about a plurality of generally parallel rollers for moving in a trans-axial direction perpendicular to an axial direction in which the rollers extend parallel to each other includes a roller shaft, a slidable member, and a rotation restrictor. The roller shaft extends outward in the axial direction from an axial end of a specific one of the plurality of generally parallel rollers. The slidable member is slidably disposed around the roller shaft to move along the roller shaft as the belt moves laterally outward in the axial direction. The rotation restrictor is disposed adjacent to the slidable member to restrict rotation of the slidable member around the roller shaft.