Abstract:
A system for and method of facilitating or enabling a lateral maneuver by a vehicle, including and utilizing a plurality of selectively engaged low friction components, such as rollers, bearings, balls, or high durometer high abrasion resistant low loss modulus rubber treads, and an actuator, such as at least one inflatable bladder, pivotal support strut, or active material element, drivenly coupled to the components.
Abstract:
A quick-return active material actuator adapted for more rapidly returning a load, so as to reduce the de-actuation time of a system, includes in a first aspect a thermally activated active material actuation element drivenly coupled to the load, an active material de-actuation element drivenly coupled to the load non-antagonistic to the actuation element, and a reconfigurable mechanism interconnecting the elements and load, wherein the de-actuation element and mechanism are cooperatively configured to return the load while the actuation element is still activated, and, in a second aspect a thermally activated active material actuation element drivenly coupled to a biased load and operable to autonomously release, so that the load is caused to be returned while the actuation element is still activated, and subsequently re-engage the load.
Abstract:
A system for and method of facilitating or enabling a lateral maneuver by a vehicle, including and utilizing a plurality of selectively engaged low friction components, such as rollers, bearings, balls, or high durometer high abrasion resistant low loss modulus rubber treads, and an actuator, such as at least one inflatable bladder, pivotal support strut, or active material element, drivenly coupled to the components.
Abstract:
A device for concealing a seam between a first surface and a second surface includes a moveable body fixedly attached to a selected one of the first surface and the second surface, wherein the moveable body is configured to transition between a first position and a second position to conceal and expose the seam, and an active material in operative communication with the moveable body, wherein the active material is configured to undergo a change in at least one property upon receipt of an activation signal, wherein the change in at least one property is effective to transition the moveable body from the first position to the second position.
Abstract:
A concealment assembly includes a component, a member configured to have a first form and a second form, wherein the first form is configured to conceal the component and the second form is configured to expose the component, thereby making the component accessible for use, appearance, or function, and an active material in operable communication with the member, wherein the active material is configured to undergo a change in at least one property upon receipt of an activation signal, wherein the change in at least one property is effective to transition the member from the first form to the second form.
Abstract:
An engine valve actuator assembly is provided that includes a movable roller finger follower operatively engaged with a displaceable engine valve. A rotatable camshaft with a plurality of different cam lobes having different profiles rotates about the roller finger follower. A plurality of intermediate finger followers contact different ones of the cam lobes and pivot about a common axis. One of the intermediate finger followers is in continuous contact with the roller finger follower. One or more additional intermediate finger followers are separately selectively engageable for common pivoting with the intermediate finger follower that remains in continuous contact with the roller finger follower, thereby varying displacement of the engine valve depending upon the various cam profiles.