Abstract:
A light guiding plate guides light from a light source and irradiates the light onto a display portion. The light guiding plate has an incidence plane, which permits light to enter the light guiding plate, an opposite and plane opposite to the incidence plane an exit plane facing the display portion, and a reflection-exit plane opposite to the exit plane. A plurality of grooves are formed on the reflection exit plane. In any adjacent pair of the grooves, the depth of the groove closer to the opposite end plane is equal to or greater than the depth of the groove closer to the incidence plane. The depth of the grooves substantially increase from the incidence plane toward the opposite end plane. This improves the uniformity of brightness distribution.
Abstract:
A luminescence cell having a novel structure includes a transparent conductor having a surface on which first and second regions are defined. A first electroluminescence element, including a first organic layer containing an organic luminescence material and a first electrode laminated on the first organic layer, is arranged on the first region. A second electroluminescence element, including a second organic layer containing an organic luminescence material and a second electrode laminated on the second organic layer, is arranged on the second region. The first electrode is physically separated from the second electrode. The first layer is physically separated from the second layer. The first and second organic layers emit light when current flows between the first and second electrodes. The light emitted from the organic layer passes through the transparent conductor and exits the luminescence cell.
Abstract:
An organic EL element that is an electroluminescence element has at least an organic layer held between a pair of electrodes. At least an electrode made of material having a higher volume resistivity, of the pair of electrodes, is formed in a flat form. The organic layer is provided with a plurality of non-light emitting portions. The non-light emitting portions are provided so that a larger number of non-light emitting portions exist per unit area at a position physically closer to the position of a terminal portion at which the electrode made of material having the higher volume resistivity is connected to an external connection terminal. As a result, the level of current passing per unit area is substantially uniform at each position on the element.
Abstract:
After entering a transparent substrate 9 of an organic EL device and passing through this substrate 9, an outside light L1 further passes through a transparent layer 10, a transparent electrode 12, and an organic light emitting layer 13 to be reflected by a reflective electrode 14. Herein, the reflective electrode 14 has irregularities and therefore the outside light L1 is diffused and reflected by this at various angles. These reflected lights are further diffused when passing through a boundary between the organic light emitting layer 13 and the transparent electrode 12 and through an irregularity surface 11 of the transparent layer 10, and outgo from the transparent substrate 9 toward a liquid crystal panel. On the other hand, lights L2 to L4 emitted from the organic light emitting layer 13 are diffused when passing through the boundary between the organic light emitting layer 13 and the transparent electrode 12 and through the irregularity surface 11 of the transparent layer 10, and outgo from the transparent substrate 9 toward the liquid crystal panel.
Abstract:
An electroluminescent device has a transparent substrate, an electroluminescent element, a transparent layer, and a brightness-enhancing layer. The transparent substrate has a first surface and a second surface. The electroluminescent element is provided on the first surface of the transparent substrate. Light emitted from exits the transparent substrate through the second surface. The transparent layer having a higher refractive index than the transparent substrate is provided on the second surface of the transparent substrate. The brightness-enhancing layer is provided on the transparent layer for enhancing brightness of light that has a specific wavelength.
Abstract:
A lighting unit includes a plurality of panels and a light scattering means. The panels are arranged adjacently. Each panel has a transparent substrate and an electroluminescent element that is provided on the transparent substrate. Each panel also has end faces. The adjacent panels are arranged so that the end faces thereof face each other. The light scattering means is interposed between at least the end faces of the adjacent panels.
Abstract:
An optical device has an incident surface and a light exit surface located at an opposite side from the incident surface. The light exit surface defines a plurality of projections. The projections project away from the incident surface. Sections of the light exit surface that define projections include side faces of pyramids. Each of the pyramids has a bottom that is an imaginary plane substantially parallel to the incident surface. The side faces of each pyramid are slopes. At least one of the slopes is inclined at a range greater than 17° and less than 60° relative to the normal to the incident surface.