Abstract:
The present invention discloses pharmaceutical-grade ferric organic compounds, including ferric citrate, which are soluble over a wider range of pH, and which have a large active surface area. A manufacturing and quality control process for making a pharmaceutical-grade ferric citrate that consistently complies with the established Manufacture Release Specification is also disclosed. The pharmaceutical-grade ferric organic compounds are suitable for treating disorders characterized by elevated serum phosphate levels.
Abstract:
The present invention discloses a novel form of ferric organic compounds, including a form of ferric citrate, which are soluble over a wider range of pH, and which have a large active surface area. The ferric organic compounds of the present invention can be delivered effectively by oral route with better delivery to treat patients suffering from hyperphosphatemia, metabolic acidosis and other disorders responsive to ferric organic compound therapy.
Abstract:
The present invention discloses a pharmaceutical-grade ferric organic compounds, including ferric citrate, which are soluble over a wider range of pH, and which have a large active surface area. A manufacturing and quality control process for making a pharmaceutical-grade ferric citrate that consistently complies with the established Manufacture Release Specification is also disclosed. The pharmaceutical-grade ferric organic compounds are suitable for treating disorders characterized by elevated serum phosphate levels.
Abstract:
The present invention discloses a novel form of ferric organic compounds, including a form of ferric citrate, which are soluble over a wider range of pH, and which have a large active surface area. The ferric organic compounds of the present invention can be delivered effectively by oral route with better delivery to treat patients suffering from hyperphosphatemia, metabolic acidosis and other disorders responsive to ferric organic compound therapy.
Abstract:
The present invention discloses a novel form of ferric organic compounds, including a form of ferric citrate, which are soluble over a wider range of pH, and which have a large active surface area. The ferric organic compounds of the present invention can be delivered effectively by oral route with better delivery to treat patients suffering from hyperphosphatemia, metabolic acidosis and other disorders responsive to ferric organic compound therapy.
Abstract:
A method of preparing polylactic acid (PLA) microsphere and polylactic-co-glycolic acid (PLGA) microsphere is provided, including the following steps. A first solution is provided, including polylactic acid or polylactic-co-glycolic acid and an organic solvent. A second solution is provided, including polyvinyl alcohol, sodium carboxymethyl cellulose and an aqueous solution. The first solution is added to the second solution and, at the same time, the second solution is agitated until polylactic acid is solidified to form a plurality of polylactic acid microspheres, or until polylactic-co-glycolic acid is solidified to form a plurality of polylactic-co-glycolic acid microspheres. The polylactic acid microspheres or polylactic-co-glycolic acid microspheres are collected. The polylactic acid microsphere and the polylactic-co-glycolic acid microsphere are respectively the accumulation of the polylactic acid and polylactic-co-glycolic acid, having a smooth surface and a mean number particle size distribution (MN) from 10 μm to 80 μm.
Abstract:
The present invention discloses a novel form of ferric organic compounds, including a form of ferric citrate, which are soluble over a wider range of pH, and which have a large active surface area. The ferric organic compounds of the present invention can be delivered effectively by oral route with better delivery to treat patients suffering from hyperphosphatemia, metabolic acidosis and other disorders responsive to ferric organic compound therapy.
Abstract:
The present invention discloses pharmaceutical-grade ferric organic compounds, including ferric citrate, which are soluble over a wider range of pH, and which have a large active surface area. A manufacturing and quality control process for making a pharmaceutical-grade ferric citrate that consistently complies with the established Manufacture Release Specification is also disclosed. The pharmaceutical-grade ferric organic compounds are suitable for treating disorders characterized by elevated serum phosphate levels.
Abstract:
The present disclosure provides a test kit for simultaneously detecting a plurality of analytes, in which the test kit includes a lysis solution and a test strip. The lysis solution includes a salt, a surfactant, a stabilizer, and a buffer solution. The test strip includes a sample pad, a conjugation pad, a cellulose membrane, and a water-absorbing pad sequentially arranged on a support plate. The conjugation pad includes a conjugation pad solution and a plurality of antibody-conjugated microspheres, and the antibody-conjugated microspheres recognize plurality of analytes. The test kit of the present disclosure achieves an effect of simultaneously detecting more than or equal to four analytes even though the conjugation pad has a limited capacity of the antibody by preparing the lysis solution with appropriate ingredients and improving a formulation of the solution contained in the test strip.
Abstract:
The present invention provides methods of treating soft tissue calcification in a subject, comprising a step of administering to said subject an effective amount of ferric organic compound, such as ferric citrate. The claimed methods may prevent, reverse, delay or stabilize soft tissue calcification in a subject having chronic kidney disease. Affected soft tissue calcification includes soft tissue calcification in the joint, skin, eye, in cardiovascular system such as heart valve, myocardium, coronary arteries and arteriole, or in internal organs such as kidney and lung.