Abstract:
A scalable speech and audio codec is provided that implements combinatorial spectrum encoding. A residual signal is obtained from a Code Excited Linear Prediction (CELP)-based encoding layer, where the residual signal is a difference between an original audio signal and a reconstructed version of the original audio signal. The residual signal is transformed at a Discrete Cosine Transform (DCT)-type transform layer to obtain a corresponding transform spectrum having a plurality of spectral lines. The transform spectrum spectral lines are transformed using a combinatorial position coding technique.The combinatorial position coding technique includes generating a lexicographical index for a selected subset of spectral lines, where each lexicographic index represents one of a plurality of possible binary strings representing the positions of the selected subset of spectral lines. The lexicographical index represents non-zero spectral lines in a binary string in fewer bits than the length of the binary string.
Abstract:
A method and apparatus for predictively quantizing voiced speech includes a parameter generator and a quantizer. The parameter generator is configured to extract parameters from frames of predictive speech such as voiced speech, and to transform the extracted information to a frequency-domain representation. The quantizer is configured to subtract a weighted sum of the parameters for previous frames from the parameter for the current frame. The quantizer is configured to quantize the difference value. A prototype extractor may be added to first extract a pitch period prototype to be processed by the parameter generator.
Abstract:
A low-bit-rate coding technique for unvoiced segments of speech, without loss of quality compared to the conventional Code Excited Linear Prediction (CELP) method operating at a much higher bit rate. A set of gains are derived from a residual signal after whitening the speech signal by a linear prediction filter. These gains are then quantized and applied to a randomly generated sparse excitation. The excitation is filtered, and its spectral characteristics are analyzed and compared to the spectral characteristics of the original residual signal. Based on this analysis, a filter is chosen to shape the spectral characteristics of the excitation to achieve optimal performance.
Abstract:
A system is provided for transmitting information through a speech codec (in-band) such as found in a wireless communication network. A modulator transforms the data into a spectrally noise-like signal based on the mapping of a shaped pulse to predetermined positions within a modulation frame, and the signal is efficiently encoded by a speech codec. A synchronization sequence provides modulation frame timing at the receiver and is detected based on analysis of a correlation peak pattern. A request/response protocol provides reliable transfer of data using message redundancy, retransmission, and/or robust modulation modes dependent on the communication channel conditions.
Abstract:
A system is provided for transmitting information through a speech codec (in-band) such as found in a wireless communication network. A modulator transforms the data into a spectrally noise-like signal based on the mapping of a shaped pulse to predetermined positions within a modulation frame, and the signal is efficiently encoded by a speech codec. A synchronization sequence provides modulation frame timing at the receiver and is detected based on analysis of a correlation peak pattern. A request/response protocol provides reliable transfer of data using message redundancy, retransmission, and/or robust modulation modes dependent on the communication channel conditions.
Abstract:
A method and apparatus for predictively quantizing voiced speech includes a parameter generator and a quantizer. The parameter generator is configured to extract parameters from frames of predictive speech such as voiced speech, and to transform the extracted information to a frequency-domain representation. The quantizer is configured to subtract a weighted sum of the parameters for previous frames from the parameter for the current frame. The quantizer is configured to quantize the difference value. A prototype extractor may be added to first extract a pitch period prototype to be processed by the parameter generator.
Abstract:
A system and method for detection of rate determination algorithm errors in variable rate communications system receivers. The disclosed embodiments prevent rate determination algorithm errors from causing audible artifacts such as screeches or beeps. The disclosed system and method detects frames with incorrectly determined data rates and performs frame erasure processing and/or memory state clean up to prevent propagation of distortion across multiple frames. Frames with incorrectly determined data rates are detected by checking illegal rate transitions, reserved bits, validating unused filter type bit combinations and analyzing relationships between fixed code-book gains and linear prediction coefficient gains.
Abstract:
A vector quantization codebook search method and apparatus use support vector machines (“SVMs”) to compute a hyperplane, where the hyperplane is used to separate codebook elements into a plurality of bins. During execution, a controller determines which of the plurality of bins contains a desired codebook element, and then searches the determined bin. Codebook search complexity is reduced and an exhaustive codebook search is selectively avoided.
Abstract:
A system and method for detection of rate determination algorithm errors in variable rate communications system receivers. The disclosed embodiments prevent rate determination algorithm errors from causing audible artifacts such as screeches or beeps. The disclosed system and method detects frames with incorrectly determined data rates and performs frame erasure processing and/or memory state clean up to prevent propagation of distortion across multiple frames. Frames with incorrectly determined data rates are detected by checking illegal rate transitions, reserved bits, validating unused filter type bit combinations and analyzing relationships between fixed code-book gains and linear prediction coefficient gains.
Abstract:
A speech classification technique for robust classification of varying modes of speech to enable maximum performance of multi-mode variable bit rate encoding techniques. A speech classifier accurately classifies a high percentage of speech segments for encoding at minimal bit rates, meeting lower bit rate requirements. Highly accurate speech classification produces a lower average encoded bit rate, and higher quality decoded speech. The speech classifier considers a maximum number of parameters for each frame of speech, producing numerous and accurate speech mode classifications for each frame. The speech classifier correctly classifies numerous modes of speech under varying environmental conditions. The speech classifier inputs classification parameters from external components, generates internal classification parameters from the input parameters, sets a Normalized Auto-correlation Coefficient Function threshold and selects a parameter analyzer according to the signal environment, and then analyzes the parameters to produce a speech mode classification.