Abstract:
Message faulting is an increasing problem in 5G and future 6G due to network crowding, receiver motion, signal fading at higher frequencies, and greater phase-noise sensitivity. Disclosed herein are methods for analyzing waveform features of the received signal using artificial intelligence, and identifying the likely faulted message elements according to correlations of those waveform features. For example, after demodulating, the receiver can identify a subset of message elements that are all demodulated according to the same modulation level, and can measure a signal parameter for each message element in the subset. The processor can then average the deviations in the subset, and compare those message elements to the average for the subset. If one of the message elements shows an anomalously large deviation from the average, that message element is likely faulted.
Abstract:
A method and a system for correcting cyclic redundancy check (CRC) for a frame with last bytes changed are provided. The method includes acquiring a data frame, calculating a CRC of a modified data frame, and determining a corrected CRC for the data frame based on at least the CRC of the modified data frame and a CRC correction field calculated on the bytes to be replaced at the end of the frame. An altered data frame includes the data frame with a number of last bytes of the data frame replaced with new bytes.
Abstract:
A faulted message element in 5G or 6G can often be identified according to its modulation parameters, including a large deviation of the branch amplitudes from the predetermined amplitude levels of the modulation scheme, and/or the SNR of the branch amplitudes, and/or an amplitude variation of the raw signal or the branches during the message element, and/or an inconsistency between the modulation state as determined by the amplitude and phase of the raw waveform versus the amplitudes of the orthogonal branch signals, among other measures of modulation quality. An AI model may be necessary to correlate the various quality measures, and optionally to determine the correct demodulation of faulted message elements. Costly, time-consuming retransmissions may be avoided by determining the correct demodulation of each message element at the receiver, thereby improving throughput and reliability with fewer delays.
Abstract:
An optical frame is received over an optical link within an optical network. The optical frame contains a payload of aggregated data, an alignment value, and a bit interleaved parity value. The content of the optical frame is aligned based on the alignment value. The bit interleaved parity value is monitored. In response to the monitoring, a transmission quality of the transmission link is determined.
Abstract:
Embodiments of the present invention provide a data transmission apparatus and method. The data transmission apparatus includes: a processor, configured to, record a link quality indication value corresponding to received data and add 1 to a count value, if the data is received within a preset period of time; if it is learned by comparison that the count value is not less than a quantity N of pieces of data allowed to be transmitted in a current period, calculate an average value of link quality indication values; and compare the average value with a threshold to determine a quantity of pieces of data allowed to be transmitted in a next period The apparatus also includes a transceiver, configured to reply with a periodicity acknowledgment frame that carries the quantity of pieces of data allowed to be transmitted in the next period.
Abstract:
Systems and methods for detecting defect propagation in a networked environment comprising a defect detection component to detect defects in an aggregate signal and/or in individual signals; and a replacement signal component to generate a maintenance signal to replace defective signals detected by the defect detection component. The maintenance signal can be a uniform signal type regardless of a type associated with a defective signal. The maintenance signal can replace a defective signal during aggregation, by an aggregation component. In another aspect, the maintenance signal can replace the defective signal during de-aggregation
Abstract:
By utilizing Reed-Solomon erasure decoding algorithms and techniques, the system is able to perform error detection for the case where the number of bytes received in error exceeds a correcting capability of a decoder. The error detection can be used, for example, to determine whether a codeword is decodable, and whether the retransmission of data is necessary. The retransmission can be accomplished by assembling a message that is sent to another modem requesting retransmission of one or more portions of data, such as one or more codewords.
Abstract:
In a signal detection apparatus, power detection section 101 detects power of an inputted received signal, and upon detection of power exceeding a power detection threshold, outputs a trigger to storage section 102. Storage section 102 stores a first received signal upon reception of the trigger and outputs the stored first received signal to multiplier 103 and newly stores a second received signal upon receipt of the next trigger. Multiplier 103 multiplies the second received signal by the first received signal, integrator 104 integrates the multiplication result from multiplier 103 during a predetermined duration to obtain a correlation value of the second and first received signals, and absolute value calculation section 105 calculates an absolute value of the correlation value from integrator 104. Determination section 106 determines the presence/absence of a detection-target signal based on the absolute value of the correlation value from absolute value calculation section 105.
Abstract:
Methods, systems, and devices are described for identifying and mitigating in-device coexistence interference for multicarrier systems implementing soft combining decoding techniques. In some aspects, the described techniques include identifying time-frequency resources of a received signal subject to coexistence interference at a transceiver of a wireless device. The time-frequency resources may include, for example, symbols, slots, code-blocks, sub-frames, subcarriers, etc. Resource-specific mitigation may then be applied to the identified resources, for example, including skipping or nulling the interfered resources in the time domain, frequency domain, or both. In some aspects, the resource-specific mitigation may be performed at the soft-combining stage of the decoding process, such as by skipping or nulling one or more log likelihood ratio (LLR) instances that correspond to the interfered resource(s).
Abstract:
This disclosure describes techniques for operating a client device to communicate with a wireless access point to validate data within a frame by comparing channel quality metrics and duration metrics to thresholds. Information received within a validity window may be treated as correctly received even if the frame fails a subsequent verification process or if reception of the frame is terminated prior to the end of the frame.