Abstract:
A system for display images comprising a thin film transistor array substrate is disclosed. The system for display images comprises a substrate having a pixel area, a source/drain region overlying the substrate within an active layer in the pixel area, a bottom electrode overlying the substrate in the pixel area, a top electrode overlying the bottom electrode, a first dielectric layer disposed on the active layer, a second dielectric layer disposed on the first dielectric layer, wherein the second dielectric layer is disposed between the bottom electrode and the top electrode and a gate disposed overlying the active layer, wherein the first and second dielectric layers are interposed between the gate and the active layer.
Abstract:
An ultra-thin highly electrically conductive material is prepared by depositing an amorphous material, substantially free of crystal growth-inducing nuclei and sites, onto a substrate. Deposition is preferably with a plasma deposition reactor, with semiconductor dopants introduced during deposition. Deposition time is preferably adjusted to create an amorphous film of a desired thickness, e.g., 200 .ANG.. After deposition, the amorphous film is annealed preferably with a rapid thermal annealing process for four minutes at 700.degree. C. The annealing triggers the creation of nuclei and subsequent large grain growth in the film, releases energy contained within the amorphous material, and helps drive crystallization and dopant activation. After annealing the material is completely crystallized, and contains large grains whose lateral dimensions can exceed the film thickness by a factor of fifty. Because the grain structure is large there are few grain boundaries to absorb dopants and carriers, and thus degrade electrical conductivity. Thin film material produced according to the present invention can exhibit conductivity 10.sup.10 times better than prior art materials at 200 .ANG. thickness. Such material is highly suitable in thin film semiconductor structures including buried gate memory devices, shallow emitter devices, as well as photovoltaic cells, X-ray and other radiation detectors. The disclosed annealing process will substantially improve conductivity of amorphous thin film materials, even if such materials are produced by methods other than deposition.